在一項(xiàng)新研究中,來自美國華盛頓大學(xué)圣路易斯分校醫(yī)學(xué)院的研究人員發(fā)現(xiàn)在診斷時(shí),,白血病細(xì)胞存在上百個(gè)突變,,但是幾乎所有突變都是因?yàn)檎Kダ隙S機(jī)產(chǎn)生,,而與癌癥不相關(guān)。他們發(fā)現(xiàn),,即便是血液中的干細(xì)胞經(jīng)常也會(huì)隨著人壽命的增加而積累新的突變,。他們的研究表明在很多情形下,,僅需兩至三個(gè)基因變化就足以將一個(gè)正常的已經(jīng)散布著突變的血細(xì)胞轉(zhuǎn)變?yōu)榧毙运杓?xì)胞性白血病(acute myeloid leukemia, AML)細(xì)胞,。相關(guān)研究于2012年7月20日發(fā)表在《細(xì)胞》期刊上,。這是研究人員第一次研究血液中健康干細(xì)胞通常產(chǎn)生多少次突變。與此同時(shí)也正是骨髓中這些未成熟的細(xì)胞產(chǎn)生體內(nèi)所有的血細(xì)胞。
AML是一種血癌,,是因?yàn)樘辔闯墒斓难?xì)胞將健康的血細(xì)胞排擠開而產(chǎn)生的。最近幾年,,華盛頓大學(xué)研究人員已對(duì)200名AML患者的基因組進(jìn)行測序,,以便試圖理解這種疾病產(chǎn)生根源中突變所起的作用,。每個(gè)病人的白血病細(xì)胞無疑含有上百種突變,但是并不是所有的突變都發(fā)揮著同樣重要的作用,,這就給科學(xué)家們帶來難題,。為了研究這些突變的起源,,研究人員從不同年齡的健康人體內(nèi)分離出造血干細(xì)胞,其中最年輕的是新生兒,,而最老的為70多歲,。每個(gè)人的骨髓中大約含有1萬個(gè)造血干細(xì)胞,。研究人員發(fā)現(xiàn)每個(gè)造血干細(xì)胞在一年期間會(huì)產(chǎn)生大約10個(gè)突變。到50歲時(shí),,人體內(nèi)每個(gè)造血干細(xì)胞積累著將近500個(gè)突變,。
在這項(xiàng)研究中,,研究人員還對(duì)24名AML患者的基因組進(jìn)行測序,并把他們體內(nèi)白血病細(xì)胞中發(fā)生的突變與健康人體內(nèi)的造血干細(xì)胞發(fā)生的那些突變進(jìn)行比較,。他們吃驚地發(fā)現(xiàn)突變總數(shù)隨年齡發(fā)生變化,,而跟病人是否患有白血病無關(guān),。這項(xiàng)研究結(jié)果有助于解釋為何白血病更加頻繁地在人變老時(shí)發(fā)生。
通過對(duì)AML患者的基因組進(jìn)行測序,,研究人員能夠鑒定出13個(gè)新的驅(qū)動(dòng)型突變(driver mutation),這些突變很可能在其他病人患上白血病中發(fā)揮著重要作用,。他們也鑒定出一些額外的協(xié)同性突變(cooperating mutation):這些突變與驅(qū)動(dòng)型突變一起發(fā)揮作用而使得造血干細(xì)胞比其他細(xì)胞具有生長優(yōu)勢,。在很多病人中,它似乎是除了一個(gè)起始驅(qū)動(dòng)型突變之外,,一到兩個(gè)額外的協(xié)同性突變?cè)诎┌Y發(fā)生中發(fā)揮著重要作用。盡管這些研究發(fā)現(xiàn)對(duì)白血病比較重要,,但是它們也可能適用于其他癌癥,。(生物谷:Bioon.com)
本文編譯自Hundreds of random mutations in leukemia linked to aging, not cancer
doi: 10.1016/j.cell.2010.10.027
PMC:
PMID:
The origin and evolution of mutations in acute myeloid leukemia
Welch JS, Ley TJ, Link DC, Westervelt P, Walter MJ, Graubert TA, DiPersio JF, Ding L, Mardis ER, Wilson RK et al.
Obstacles in elucidating the role of oxidative stress in aging include difficulties in (1) tracking in vivo oxidants, in (2) identifying affected proteins, and in (3) correlating changes in oxidant levels with life span. Here, we used quantitative redox proteomics to determine the onset and the cellular targets of oxidative stress during Caenorhabditis elegans’ life span. In parallel, we used genetically encoded sensor proteins to determine peroxide levels in live animals in real time. We discovered that C. elegans encounters significant levels of oxidants as early as during larval development. Oxidant levels drop rapidly as animals mature, and reducing conditions prevail throughout the reproductive age, after which age-accompanied protein oxidation sets in. Long-lived daf-2 mutants transition faster to reducing conditions, whereas short-lived daf-16 mutants retain higher oxidant levels throughout their mature life. These results suggest that animals with improved capacity to recover from early oxidative stress have significant advantages later in life.