來自麻省總醫(yī)院,哈佛醫(yī)學(xué)院,,貝斯以色列女執(zhí)事醫(yī)療中心等處的研究人員應(yīng)用高度靈敏的質(zhì)譜分析法來檢測一組參與者在跑步機上運動之前,、之中和之后的血液中的200種代謝物,,從中發(fā)現(xiàn)了機體運動過程中的一系列變化。
運動過程中機體會發(fā)生代謝很多方面的變化,,比如脂肪會由神經(jīng),、內(nèi)分泌系統(tǒng)調(diào)節(jié),交感神經(jīng),、腎上腺素,、胰高血糖素、甲狀腺素,、生長激素,、皮質(zhì)醇等促進脂肪動員,而胰島素起抑制作用,。機體在運動時能更多地利用血漿游離脂肪酸,、甘油三酯和酮體,,并能增加肌細胞內(nèi)甘油三酯的貯存量。
但是具體而言在這個過程中,,血液中的化學(xué)物質(zhì)會發(fā)生怎樣的變化呢,,至今并不能說清楚,在這項研究中,,研究人員應(yīng)用高度靈敏的質(zhì)譜分析法來檢測一組參與者在跑步機上運動之前,、之中和之后的血液中的200種代謝物,結(jié)果顯示,,更為健康的個人(無論是因為先天健康或是通過訓(xùn)練而變得健康)其血流中都有不同的生物化學(xué)變化,,這些變化使得他們可以比那些不太健康的人燃燒更多的熱卡。
這項研究找到了在身體中的化學(xué)開關(guān),,這些化學(xué)開關(guān)在運動的時候,,在較健康的人相對于不太健康的人中是顯然不同的。 通過運動出汗并讓心跳加快已知可保護人體免生許多疾病并可延長壽命,,但人們對運動為什么會帶來這些絕對正面的效果依然不是很清楚。這些發(fā)現(xiàn)使人們對運動是如何影響代謝有了新的了解,,并可能使人們研發(fā)出新的診斷測試來評估一個人的健康狀況,,以及用最新的添加物質(zhì)來補充運動后喪失的代謝物質(zhì)(想一下在奔跑后大口咽下充滿了代謝物的能量飲料)。
身體中每一種應(yīng)用能量的活動都會導(dǎo)致代謝物的產(chǎn)生,。代謝物是那些在血液中所測得的物質(zhì),,它們是來自本原物質(zhì)的代謝或降解所產(chǎn)生的物質(zhì)。每個血樣本中含有數(shù)百種這樣的代謝物,,在某一天它們可提供一份有關(guān)某個人健康狀態(tài)的化學(xué)"快照",。
這項研究顯示,健康的個人與不太健康的個人有著一套顯然不同的代謝物的變化,。研究人員應(yīng)用高度靈敏的質(zhì)譜分析法來檢測一組參與者在跑步機上運動之前,、之中和之后的血液中的200種代謝物。他們發(fā)現(xiàn),,健康的人的儲存脂肪,、糖和氨基酸的崩解可增加98%,而不太健康的人的增幅只有60-70%,。在另外一組非常健康的參與波士頓馬拉松賽的人,,其增幅則可高達驚人的1128%。這些結(jié)果顯示,,更為健康的個人(無論是因為先天健康或是通過訓(xùn)練而變得健康)其血流中都有不同的生物化學(xué)變化,,這些變化使得他們可以比那些不太健康的人燃燒更多的熱卡。(生物谷Bioon.com)
生物谷推薦原文出處:
Sci Transl Med DOI: 10.1126/scitranslmed.3001006
Metabolic Signatures of Exercise in Human Plasma
Gregory D. Lewis1,2,3,4,*, Laurie Farrell1, Malissa J. Wood1, Maryann Martinovic1, Zoltan Arany5, Glenn C. Rowe5, Amanda Souza4, Susan Cheng1,6,7, Elizabeth L. McCabe6, Elaine Yang4, Xu Shi4, Rahul Deo1,8, Frederick P. Roth8, Aarti Asnani1,2, Eugene P. Rhee4,9, David M. Systrom10, Marc J. Semigran1, Ramachandran S. Vasan6,11,12, Steven A. Carr4, Thomas J. Wang1,6, Marc S. Sabatine3,7, Clary B. Clish4 and Robert E. Gerszten1,2,3,4,*
Exercise provides numerous salutary effects, but our understanding of how these occur is limited. To gain a clearer picture of exercise-induced metabolic responses, we have developed comprehensive plasma metabolite signatures by using mass spectrometry to measure >200 metabolites before and after exercise. We identified plasma indicators of glycogenolysis (glucose-6-phosphate), tricarboxylic acid cycle span 2 expansion (succinate, malate, and fumarate), and lipolysis (glycerol), as well as modulators of insulin sensitivity (niacinamide) and fatty acid oxidation (pantothenic acid). Metabolites that were highly correlated with fitness parameters were found in subjects undergoing acute exercise testing and marathon running and in 302 subjects from a longitudinal cohort study. Exercise-induced increases in glycerol were strongly related to fitness levels in normal individuals and were attenuated in subjects with myocardial ischemia. A combination of metabolites that increased in plasma in response to exercise (glycerol, niacinamide, glucose-6-phosphate, pantothenate, and succinate) up-regulated the expression of nur77, a transcriptional regulator of glucose utilization and lipid metabolism genes in skeletal muscle in vitro. Plasma metabolic profiles obtained during exercise provide signatures of exercise performance and cardiovascular disease susceptibility, in addition to highlighting molecular pathways that may modulate the salutary effects of exercise.