生物谷報道:神經(jīng)生物學(xué)家們近幾年來獲得了巨大的技術(shù)突破:用于細胞標(biāo)記的復(fù)合了復(fù)雜方法的成像技術(shù)方面的進步已經(jīng)可以讓科學(xué)家們在活體腦細胞中觀測細胞和亞細胞事件,,這為研究基礎(chǔ)神經(jīng)系統(tǒng)進程打開了一扇窗,,而復(fù)合了高通量方法的新穎遺傳工具則為進一步了解構(gòu)成神經(jīng)環(huán)路的各種成份提供了幫助,,除此之外,,近幾年在腦活性操作研究方面也提出了一些新方法,也帶來了新的研究進展,,最新一期的《Nature》雜志中就得到了這一新技術(shù)——證明了光敏感蛋白可以用于精確激活和定時沉默神經(jīng)元研究。
同時在本期的 Nature 雜志上,,網(wǎng)絡(luò)焦點(Web Focus)以“Technical breakthroughs in neuroscience”為題,,也進行了這方面內(nèi)容的詳述。其中包括video,,podcast,,以及目前和之前的一些研究進展。
目前的研究:
ARTICLEMultimodal fast optical interrogation of neural circuitry Free access
Feng Zhang et al.
Nature 446, 633 (5 April 2007) doi:10.1038/nature05744
Abstract | Full Text | PDF | Supplementary Information
復(fù)雜的神經(jīng)工程技術(shù)使得人們有可能對活的腦回路進行成像和控制,。這一領(lǐng)域的最新進展涉及將一種來自古細菌Natronomonas pharaonis的光激發(fā)的氯化物泵轉(zhuǎn)染(transfection)進小鼠海馬體神經(jīng)元中,,從而能夠在毫秒時間尺度上對神經(jīng)活動進行抑制。這種方法可以補充通過一個可以光激發(fā)的藻通道來激發(fā)神經(jīng)元的一種現(xiàn)有工具,。這兩個通道對不同波長的光產(chǎn)生響應(yīng),,允許對同一回路中的神經(jīng)活動進行快速雙向控制。在完好的動物身上也是這樣,,因為具有這兩個通道的轉(zhuǎn)基因蛔蟲C. elegans的運動受光的影響,。該體系可以通過遺傳學(xué)方法定位于特定類型的神經(jīng)元,因而便出現(xiàn)了這樣一種可能性:它有可能導(dǎo)致神經(jīng)疾病的光學(xué)治療
之前的研究:
神經(jīng)元光學(xué)激發(fā)(OPTICAL STIMULATION)
技術(shù)報告
Anticonvulsant and anesthetic effects of a fluorescent neurosteroid analog activated by visible light
Lawrence N. Eisenman et al.
Nat. Neurosci. 10, 523 - 530 (25 February 2007) doi:10.1038/nn1862
Abstract | Full Text | PDF | Supplementary Information
Millisecond-timescale, genetically targeted optical control of neural activity
Edward S. Boyden, Feng Zhang, Ernst Bamberg, Georg Nagel and Karl Deisseroth
Nat. Neurosci. 8, 1263-1268 (8 September 2005) doi:10.1038/nn1525
Abstract | Full Text | PDF
Light-activated ion channels for remote control of neuronal firing
Matthew Banghart, Katharine Borges, Ehud Isacoff, Dirk Trauner and Richard H. Kramer
Nat. Neurosci. 7, 1381-1386 (7 December 2004) doi:10.1038/nn1356
Abstract | Full Text | PDF
觀點透視
Channelrhodopsin-2 and optical control of excitable cells
Feng Zhang, Li-Ping Wang, Edward S. Boyden and Karl Deisseroth
Nat. Methods 3, 785-792 (3 October 2006) doi:10.1038/nmeth936
Abstract | Full Text | PDF
Photochemical tools for remote control of ion channels in excitable cells
Richard H. Kramer, James J. Chambers and Dirk Trauner
Nat. Chem. Biol. 1, 360-365 (1 December 2005) doi:10.1038/nchembio750
Abstract | Full Text | PDF
[NextPage]
微環(huán)路(MICROCIRCUITRY)
研究文章
Targeting neural circuitry in zebrafish using GAL4 enhancer trapping
Ethan K. Scott et al.
Nat. Methods 4 323-326 (18 March 2007) doi:10.1038/nmeth1033
Abstract | Full Text | PDF | Supplementary Information
Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity
Yumiko Yoshimura and Edward M. Callaway
Nat. Neurosci. 8, 1552-1559 (8 November 2005) doi:10.1038/nn1565
Abstract | Full Text | PDF | Supplementary Information
Heterogeneity in the pyramidal network of the medial prefrontal cortex
Yun Wang et al.
Nat. Neurosci. 9, 534-542 (9 April 2005) doi:10.1038/nn1670
Abstract | Full Text | PDF | Supplementary Information
基因特征&功能分析
技術(shù)報告
FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains
Mary Kay Lobo, Stanislav L. Karsten, Michelle Gray, Daniel H. Geschwind and X William Yang
Nat. Neurosci. 9, 443-452 (9 March 2006) doi:10.1038/nn1654
Abstract | Full Text | PDF | Supplementary Information
研究文章
Genome-wide atlas of gene expression in the adult mouse brain
Ed S. Lein et al.
Nature 445, 168-176 (24 January 2007) doi:10.1038/nature05453
Abstract | Full Text | PDF | Supplementary Information
Molecular taxonomy of major neuronal classes in the adult mouse forebrain
Ken Sugino et al.
Nat. Neurosci. 9, 99-107 (9 January 2006) doi:10.1038/nn1618
Abstract | Full Text | PDF | Supplementary Information
Systematic analysis of genes required for synapse structure and function
Derek Sieburth et al.
Nat