新的研究成果改進(jìn)了科學(xué)家對于這種疾病的發(fā)病過程和功能上的相互作用的理解,。
自閉癥又稱孤獨癥,是一種廣泛性發(fā)展障礙,,以嚴(yán)重的,、廣泛的社會相互影響和溝通技能的損害以及刻板的行為、興趣和活動為特征的精神疾病,。據(jù)統(tǒng)計,,自閉癥的發(fā)病率大約為萬分之五。目前科學(xué)家對于自閉癥的病因仍然未知,,很多研究人員懷疑自閉癥是由基因控制,,再由環(huán)境因素觸發(fā)。日前發(fā)表在《自然》雜志與《科學(xué)—轉(zhuǎn)化醫(yī)學(xué)》雜志上的剖析自閉癥分子遺傳基礎(chǔ)的兩項研究成果,,改進(jìn)了科學(xué)家對于這種疾病的發(fā)病過程和功能上的相互作用的理解,。其中的一篇論文研究了自閉癥大腦中的轉(zhuǎn)錄調(diào)節(jié)異常以及拼接,而另一篇文章則描述了一種與自閉癥有關(guān)的蛋白質(zhì)的相互作用組,,表明了不同的自閉癥表型背后的共同機制,。
美國加利福尼亞大學(xué)洛杉磯分校的Irina Voineagu和同事分析了對照組個體和自閉癥患者死后大腦的轉(zhuǎn)錄組,。在進(jìn)行研究的3個區(qū)域中,只有皮質(zhì)表現(xiàn)出了組與組之間顯著的基因表達(dá)差異,。更讓人驚訝的是,,在自閉癥患者的大腦中,額葉和顳葉皮層之間在表達(dá)上的差別遠(yuǎn)遠(yuǎn)低于對照組(在其中發(fā)現(xiàn)了174個有差異表達(dá)的基因,,而在自閉癥患者中則沒有發(fā)現(xiàn)),,這意味著自閉癥的病理學(xué)涉及皮質(zhì)模式的變化。
為了確定不同的轉(zhuǎn)錄位點對功能造成的影響,,研究人員搜索了在正常大腦和自閉癥大腦之間區(qū)別表達(dá)的基因聯(lián)合表達(dá)模塊,。其中的一個模塊在自閉癥病例中極少表達(dá),而在涉及突觸和神經(jīng)信號的基因,,以及在已知的自閉癥易感基因中卻很豐富,。而第二個模塊則在自閉癥病例中過度表達(dá),并且在與免疫力有關(guān)的基因中富集,。第一個模塊包含自閉癥影響基因A2BP1(也稱為RBFOX1),,它編碼了一個拼接調(diào)節(jié)器。這種神經(jīng)元模塊同樣富集于由全基因組相關(guān)研究發(fā)現(xiàn)的自閉癥候選位點的事實證明了進(jìn)一步調(diào)查這種基因網(wǎng)絡(luò)是有道理的,。
第二項研究的出發(fā)點則是由26個基因構(gòu)成的一組基因,,它們與自閉癥具有因果關(guān)系或相互聯(lián)系。盡管這些基因編碼了一系列各種各樣的生物學(xué)功能,,然而美國得克薩斯州休斯敦市貝勒醫(yī)學(xué)院的Yasunari Sakai和同事推斷,,它們可能僅僅會聚于幾個功能通道上。為了證實這種假設(shè),,利用與自閉癥有關(guān)的蛋白質(zhì)片段作為誘餌,,基于一項酵母雙雜交試驗,他們建立了一種自閉癥蛋白質(zhì)相互作用圖譜,。
相互作用組圖譜由在這次篩查中發(fā)現(xiàn)的539種蛋白質(zhì)構(gòu)成,,強調(diào)了與自閉癥發(fā)病機理有關(guān)的新的病理學(xué)相互作用以及途徑,包括一些沒有預(yù)料到的因素,,例如,,它揭示了SHANK3和錯構(gòu)素(也被稱為TSC1)之間的緊密聯(lián)系,它們分別是導(dǎo)致Phelan McDermid綜合征和結(jié)節(jié)性硬化癥的突變,。這是一項重要的發(fā)現(xiàn),,因為它表明一種普通分子導(dǎo)致了在典型自閉癥,以及許多表現(xiàn)出自閉癥表型的廣泛的神經(jīng)發(fā)育障礙中顯現(xiàn)的自閉癥特征,。
蛋白質(zhì)交互分析的作用的進(jìn)一步證據(jù)來自于研究人員發(fā)現(xiàn),,與對照組相比,典型自閉癥病例更有可能在這個相互作用組的基因中出現(xiàn)拷貝數(shù)變異,。研究人員同時發(fā)現(xiàn),,在典型自閉癥病例中,,新發(fā)生的拷貝數(shù)變異橫跨3個基因網(wǎng)絡(luò)的遺傳位點,,從而表明交互作用圖譜還能夠用于疾病基因的發(fā)現(xiàn),。
這兩項研究通過不同的途徑證明了自閉癥的會聚性機制——第一項研究以一種無偏見的方式篩查這些機制,而第二項研究則建立于之前認(rèn)知的基礎(chǔ)上,。識別與一種遺傳異構(gòu)疾病——例如自閉癥——有關(guān)的功能分子網(wǎng)絡(luò)是向著識別診斷和治療目標(biāo)邁出的重要一步,,這兩項研究提供了許多這樣的信息。(生物谷Bioon.com)
生物谷推薦原文出處:
Nature doi:10.1038/nature10110
Transcriptomic analysis of autistic brain reveals convergent molecularpathology
Irina Voineagu; Xinchen Wang; Patrick Johnston; Jennifer K. Lowe; Yuan Tian; Steve Horvath; Jonathan Mill; Rita M. Cantor; Benjamin J. Blencowe; Daniel H. Geschwind
Autism spectrum disorder (ASD) is a common, highly heritable neurodevelopmental condition characterized by marked genetic heterogeneity1, 2, 3. Thus, a fundamental question is whether autism represents an aetiologically heterogeneous disorder in which the myriad genetic or environmental risk factors perturb common underlying molecular pathways in the brain4. Here, we demonstrate consistent differences in transcriptome organization between autistic and normal brain by gene co-expression network analysis. Remarkably, regional patterns of gene expression that typically distinguish frontal and temporal cortex are significantly attenuated in the ASD brain, suggesting abnormalities in cortical patterning. We further identify discrete modules of co-expressed genes associated with autism: a neuronal module enriched for known autism susceptibility genes, including the neuronal specific splicing factor A2BP1 (also known as FOX1), and a module enriched for immune genes and glial markers. Using high-throughput RNA sequencing we demonstrate dysregulated splicing of A2BP1-dependent alternative exons in the ASD brain. Moreover, using a published autism genome-wide association study (GWAS) data set, we show that the neuronal module is enriched for genetically associated variants, providing independent support for the causal involvement of these genes in autism. In contrast, the immune-glial module showed no enrichment for autism GWAS signals, indicating a non-genetic aetiology for this process. Collectively, our results provide strong evidence for convergent molecular abnormalities in ASD, and implicate transcriptional and splicing dysregulation as underlying mechanisms of neuronal dysfunction in this disorder.
Science Translational Medicine DOI: 10.1126/scitranslmed.3002166
Protein Interactome Reveals Converging Molecular Pathways Among Autism Disorders
Sakai, Yasunari; Shaw, Chad A.; Dawson, Brian C.; Dugas, Diana V.; Al-Mohtaseb, Zaina; Hill, David E.; Zoghbi, Huda Y.
To uncover shared pathogenic mechanisms among the highly heterogeneous autism spectrum disorders (ASDs), we developed a proteininteraction network that identified hundreds of new interactions among proteins encoded by ASD-associated genes. We discoveredunexpectedly high connectivity between SHANK and TSC1, previously implicated in syndromic autism, suggesting that common molecularpathways underlie autistic phenotypes in distinct syndromes. ASD patients were more likely to harbor copy number variationsthat encompass network genes than were control subjects. We also identified, in patients with idiopathic ASD, three de novolesions (deletions in 16q23.3 and 15q22 and one duplication in Xq28) that involve three network genes (NECAB2, PKM2, and FLNA). The protein interaction network thus provides a framework for identifying causes of idiopathic autism and for understandingmolecular pathways that underpin both syndromic and idiopathic ASDs.