2012年11月23日 訊 /生物谷BIOON/ --近日,一項來自MIT和波士頓大學研究者的研究揭示了,,神經(jīng)網(wǎng)絡(luò)幫助機體形成想法以及機體想法可變性的分子機制,,研究者鑒別出了一系列的神經(jīng)元,,其可以通過互相擺動來編碼特異性的大腦行為。這項研究揭示了有意識地思考的本質(zhì)或許是有節(jié)律發(fā)生的,,相關(guān)研究成果刊登于11月21的國際雜志Neuron上,。
在文章中,研究者在猴子大腦中發(fā)現(xiàn)了兩組神經(jīng)網(wǎng)絡(luò),,這些猴子受過訓(xùn)練,,可以對基于顏色或者方向的物體產(chǎn)生反應(yīng),這項任務(wù)需要認知的靈活性,,也就是在兩組不同的行為規(guī)則中可以有能力隨意控制,。
正如猴子可以在兩組任務(wù)之間相互切換改變,研究者就測定了大腦額葉前皮質(zhì)不同位置產(chǎn)生的大腦波,,大腦計劃和想法的形成常常發(fā)生在這些區(qū)域,,這些大腦波可以通過神經(jīng)元電活動性的有節(jié)律地波動而發(fā)生。當動物對方向性物體產(chǎn)生反應(yīng)時,,研究者就發(fā)現(xiàn)特定的神經(jīng)元振動頻率就會明顯變高,,產(chǎn)生β-波。
目前研究者試圖研究揭示,,隨著大腦在不同規(guī)則/想法之間來回切換的時候,,這些神經(jīng)網(wǎng)絡(luò)是如何協(xié)調(diào)自身的活性的,這項研究將幫助研究者解決大腦意識發(fā)生的神經(jīng)基礎(chǔ),,相關(guān)研究由美國國家科學基金和國立精神衛(wèi)生研究所提供資助,。(生物谷Bioon.com)
編譯自:Rhythmic Brain Waves: Fluctuations in Electrical Activity May Allow Brain to Form Thoughts and Memories
doi:10.1016/j.neuron.2012.09.029
PMC:
PMID:
Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex
Timothy J. Buschman, Eric L. Denovellis, Cinira Diogo, Daniel Bullock, Earl K. Miller
Intelligent behavior requires acquiring and following rules. Rules define how our behavior should fit different situations. To understand its neural mechanisms, we simultaneously recorded from multiple electrodes in dorsolateral prefrontal cortex (PFC) while monkeys switched between two rules (respond to color versus orientation). We found evidence that oscillatory synchronization of local field potentials (LFPs) formed neural ensembles representing the rules: there were rule-specific increases in synchrony at beta (1940 Hz) frequencies between electrodes. In addition, individual PFC neurons synchronized to the LFP ensemble corresponding to the current rule (color versus orientation). Furthermore, the ensemble encoding the behaviorally dominant orientation rule showed increased alpha (616 Hz) synchrony when preparing to apply the alternative (weaker) color rule. This suggests that beta-frequency synchrony selects the relevant rule ensemble, while alpha-frequency synchrony deselects a stronger, but currently irrelevant, ensemble. Synchrony may act to dynamically shape task-relevant neural ensembles out of larger, overlapping circuits.