嗜中性粒細胞在抵抗病原體的免疫響應(yīng)中扮演了一個重要角色,,但是它們調(diào)節(jié)自身保護效應(yīng)的機制卻一直沒有搞清,。最近發(fā)表在《免疫學》上的一項研究顯示,,在嗜中性粒細胞轉(zhuǎn)移到淋巴結(jié)的過程中——它們在這里形成了動態(tài)分子團,,就像蜂群一樣,,這些細胞扮演了抵抗胞內(nèi)寄生物的一個重要角色,。
為了研究嗜中性粒細胞與淋巴結(jié)之間的關(guān)系,,美國加利福尼亞大學伯克利分校的Tatyana Chtanova等人使用了嗜中性粒細胞表達綠色熒光蛋白質(zhì)的小鼠,,并使它們傳染上胞內(nèi)寄生物——弓形蟲,同時利用熒光顯微鏡方法檢測淋巴結(jié)組織切片,。研究人員觀察到,,在感染后,嗜中性粒細胞迅速轉(zhuǎn)移到淋巴結(jié)中,,并且這一過程依賴于它們的適應(yīng)物蛋白質(zhì)MyD88(骨髓差別主要響應(yīng)基因88)的表達,。此外,滲透的嗜中性粒細胞被發(fā)現(xiàn)形成了群集,,并且這些群集與寄生蟲在淋巴結(jié)中所處的位置相符合,。
利用完整無損的淋巴結(jié)的雙光子激光掃描顯微鏡,研究人員隨后調(diào)查了嗜中性粒細胞群集形成的動力學原因,。他們觀察到,,在被弓形蟲感染后,嗜中性粒細胞形成兩種群集:瞬時群集,,即規(guī)模較小且溶解迅速,;持久群集,即規(guī)模較大(由于嗜中性粒細胞的連續(xù)轉(zhuǎn)移和與附近群集的合并)且在成像期間內(nèi)持續(xù)存在,?;谶@些,研究人員推斷,,一旦一個群集達到一定的規(guī)模,,由嗜中性粒細胞產(chǎn)生的信號將會壓倒周圍群集的信號,形成一個穩(wěn)定的群集中心,。嗜中性粒細胞同時被發(fā)現(xiàn)以直接的方式以及一連串地向這些群集遷移,,這意味著這里的細胞之間可能存在著信息傳遞。
研究人員繼續(xù)研究了群集如何在感染后被組合起來,,并且觀察到它們能夠被嗜中性粒細胞與從淋巴結(jié)被感染的細胞中溢出的寄生蟲之間的合作行為所激活,。更特別的是,小分子團最初是由少數(shù)“先驅(qū)”嗜中性粒細胞所形成的,并且這些分子團誘導其他細胞向群集中遷移,。
一個嗜中性粒細胞已知能夠通過分泌酶使組織退化,,研究人員隨后調(diào)查了是否群集的出現(xiàn)與淋巴結(jié)中被感染細胞的破壞相一致。實際上,,他們觀察到,,CD169+巨噬細胞的連續(xù)層——通常被發(fā)現(xiàn)在淋巴結(jié)的囊下竇——在被弓形蟲傳染后被破壞,這一區(qū)域的缺口與嗜中性粒細胞群集的位置相一致,。這意味著,,隨著寄生蟲的傳染,嗜中性粒細胞群集通過除去囊下竇巨噬細胞從而破壞了淋巴結(jié)的結(jié)構(gòu),。
研究人員認為,,這些數(shù)據(jù)表明,寄生蟲在從被感染的細胞中外出的過程中所釋放的信號,,以及由先驅(qū)嗜中性粒細胞導致的動態(tài)群集的形成,,去除了淋巴結(jié)囊下竇中被感染的巨噬細胞。(生物谷Bioon.com)
生物谷推薦原始出處:
Immunity, 19 September 2008 doi:10.1016/j.immuni.2008.07.012
Dynamics of Neutrophil Migration in Lymph Nodes during Infection
Tatyana Chtanova1,3,Marie Schaeffer1,3,Seong-Ji Han1,3,Giel G. van Dooren2,Marcelo Nollmann1,Paul Herzmark1,Shiao Wei Chan1,Harshita Satija1,Kristin Camfield1,Holly Aaron1,Boris Striepen2andEllen A. Robey1,,
1 Department of Molecular and Cell Biology, Life Sciences Addition, University of California, Berkeley, CA 94720, USA
2 Center for Tropical & Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Paul Coverdell Center, Athens, GA30602, USA
3 These authors contributed equally to this work
Summary
Although the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning-laser microscopy to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We found that neutrophils formed both small, transient and large, persistent swarms via a coordinated migration pattern. We provided evidence that cooperative action of neutrophils and parasite egress from host cells could trigger swarm formation. Neutrophil swarm formation coincided in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses.