美國(guó)科學(xué)家發(fā)現(xiàn),,身體各個(gè)器官的數(shù)千個(gè)基因,每天的起伏變化也都是可預(yù)測(cè)的,,它們的活動(dòng)周期則受多種復(fù)雜方式的控制,。相關(guān)論文已發(fā)表在《科學(xué)》雜志網(wǎng)站上。
了解基因在一天中如何周期性地開(kāi)關(guān),,是掌握許多生理功能的關(guān)鍵,包括睡眠和新陳代謝,?;羧A德·休斯醫(yī)學(xué)院研究人員、得克薩斯大學(xué)西北醫(yī)學(xué)中心的約瑟夫·塔卡哈斯在上世紀(jì)90年代發(fā)現(xiàn)了節(jié)律基因及其蛋白質(zhì)產(chǎn)物,,他和其他研究人員確定了該基因?yàn)镃LOCK,,并發(fā)現(xiàn)其他兩種蛋白BMAL1和NPAS2,能在白天與基因結(jié)合激活它們,,另外4個(gè)節(jié)律調(diào)控因子是PER1,、PER2、CRY1和CRY2,,能在夜晚抑制基因,。
新研究旨在全面理解激活因子和抑制因子是怎樣協(xié)調(diào)配合,共同維持身體24小時(shí)生理節(jié)奏的,。
新研究的核心發(fā)現(xiàn)是,,RNA聚合酶(有了這種酶基因才能轉(zhuǎn)錄合成蛋白質(zhì))的功能隨著生理節(jié)律而變化。塔卡哈斯說(shuō):“RNA聚合酶Ⅱ的發(fā)動(dòng)是整個(gè)基因組周期節(jié)律的開(kāi)始,。隨著整體RNA聚合酶Ⅱ和轉(zhuǎn)錄的調(diào)控,,全體染色質(zhì)的狀態(tài)都受節(jié)律生物鐘的調(diào)控。組蛋白也隨著整個(gè)基因組的節(jié)律被廣泛修改,,而組蛋白是維持DNA完整性的關(guān)鍵,。這表明每個(gè)基因都可能按照生理節(jié)律的周期被修改。”
此外,,他們還做出了許多重要發(fā)現(xiàn),。首先是節(jié)律調(diào)控因子能在許多基因組位點(diǎn)和標(biāo)靶基因結(jié)合。他們研究了小鼠肝臟細(xì)胞的基因組,,發(fā)現(xiàn)超過(guò)2萬(wàn)個(gè)位點(diǎn)能與1個(gè)或多個(gè)調(diào)控因子結(jié)合,;其中超過(guò)1千個(gè)位點(diǎn)能與所有7種調(diào)控因子結(jié)合,還有許多位點(diǎn)只能與激活或抑制因子二者之一結(jié)合,。塔卡哈斯說(shuō):“我們以前還以為,,它們都只與同一位點(diǎn)結(jié)合。”
其次,,他們研究了肝細(xì)胞所有基因每天的表達(dá)方式,,發(fā)現(xiàn)在轉(zhuǎn)錄過(guò)程中,基因表達(dá)并非都控制在轉(zhuǎn)錄層次,。他們還發(fā)現(xiàn),,在一天中RNA聚合酶Ⅱ與基因的結(jié)合比基因轉(zhuǎn)錄更早發(fā)生。周期開(kāi)始時(shí),,轉(zhuǎn)錄激活因子CLOCK和BMAL1招來(lái)了RNA聚合酶Ⅱ,,但被隨后出現(xiàn)的抑制因子CRY1給抑制了。結(jié)果RNA聚合酶不得不“暫停”幾個(gè)小時(shí),,暫停解除后才開(kāi)始轉(zhuǎn)錄,。所以,生理節(jié)奏不僅與RNA聚合酶有關(guān),,還和“暫停”狀態(tài)的解除有關(guān),。
“這些節(jié)律基因的標(biāo)靶,最高類別的就是新陳代謝路徑,,所以說(shuō)生物鐘秘密地控制著每天的新陳代謝,。這些發(fā)現(xiàn)為研究短期轉(zhuǎn)錄動(dòng)力學(xué)、生理周期,、聚合酶和一般轉(zhuǎn)錄提供了新途徑,。”塔卡哈斯說(shuō),下一步是研究RNA聚合酶在一天的節(jié)律中是怎樣受控的,,是什么原因讓聚合酶對(duì)某些基因在一天里的特定時(shí)間暫停,,以及其他RNA分子在轉(zhuǎn)錄之后是如何被調(diào)控的。(生物谷Bioon.com)
doi:10.1126/science.1226339
PMC:
PMID:
Transcriptional Architecture and Chromatin Landscape of the Core Circadian Clock in Mammals
Nobuya Koike, Seung-Hee Yoo, Hung-Chung Huang, Vivek Kumar, Choogon Lee, Tae-Kyung Kim, Joseph S. Takahashi
The mammalian circadian clock involves a transcriptional feedback loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of mRNA cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.