2012年9月10日 訊 /生物谷BIOON/ --近日,刊登在國際著名雜志Nature上的一篇研究報告中,,來自布里斯托大學(xué)等處的研究者揭示了細胞按優(yōu)先次序區(qū)分存在潛在危險損傷的細胞基因修復(fù)的分子機制,。文章中,研究者集中研究了單個分子的行為,,這就為更好地理解細胞修復(fù)途徑是如何發(fā)生的提供了基礎(chǔ),。
形成細胞“說明書”的遺傳信息是由DNA分子結(jié)構(gòu)單元來編碼的,遺傳信息也可以被諸如紫外燈或者煙草煙霧等誘變劑損傷,,遺傳信息的損傷可以引發(fā)細胞死亡或者促使細胞改變其行為,,進而引發(fā)疾病。
機體細胞可以通過產(chǎn)生能夠檢測損傷結(jié)構(gòu)單元的蛋白質(zhì)來進行自我保護,,一旦這種特定蛋白質(zhì)檢測到了損傷的結(jié)構(gòu)單元就會將其移除,。在大部分細胞中都包含有可以進行快速損傷修復(fù)的基因。
在這項研究中,,研究者Terence Strick博士將單個的DNA分子在磁場中進行拉伸然后觀察單一的蛋白質(zhì)如何影響損傷的基因,。研究者發(fā)現(xiàn)在這個過程中需要很多的步驟來完成損傷的修復(fù),蛋白質(zhì)會慢慢“閱讀”基因的直至其到達損傷部位,,然后對基因進行修復(fù),。
研究者表示,發(fā)現(xiàn)基因組不同部分以不同比例給修復(fù)的機制對于我們理解細菌耐藥性以及癌癥的發(fā)病機制非常重要,。在分子水平研究其分子機理可以使得我們更好地理解其隱藏的分子“秘密”,。(生物谷Bioon.com)
編譯自:Protecting Genes, One Molecule at a Time
doi:10.1038/nature11430
PMC:
PMID:
Initiation of transcription-coupled repair characterized at single-molecule resolution
Kévin Howan, Abigail J. Smith, Lars F. Westblade, Nicolas Joly, Wilfried Grange, Sylvain Zorman, Seth A. Darst, Nigel J. Savery & Terence R. Strick
Transcription-coupled DNA repair uses components of the transcription machinery to identify DNA lesions and initiate their repair. These repair pathways are complex, so their mechanistic features remain poorly understood. Bacterial transcription-coupled repair is initiated when RNA polymerase stalled at a DNA lesion is removed by Mfd, an ATP-dependent DNA translocase1, 2, 3. Here we use single-molecule DNA nanomanipulation to observe the dynamic interactions of Escherichia coli Mfd with RNA polymerase elongation complexes stalled by a cyclopyrimidine dimer or by nucleotide starvation. We show that Mfd acts by catalysing two irreversible, ATP-dependent transitions with different structural, kinetic and mechanistic features. Mfd remains bound to the DNA in a long-lived complex that could act as a marker for sites of DNA damage, directing assembly of subsequent DNA repair factors. These results provide a framework for considering the kinetics of transcription-coupled repair in vivo, and open the way to reconstruction of complete DNA repair pathways at single-molecule resolution.