據(jù)物理學(xué)家組織網(wǎng)4月16日(北京時間)報道,,斯坦福大學(xué)醫(yī)學(xué)院的科學(xué)家發(fā)現(xiàn),一種黃金納米粒子能在腦部腫瘤“安家”,,同時對3種不同的成像方式可見,,精確顯示腫瘤的輪廓,使小鼠腦瘤的移除提升至前所未有的精度,。相關(guān)研究報告發(fā)表在4月15日的《自然·醫(yī)學(xué)》Nature Medicine雜志網(wǎng)絡(luò)版上,。
研究人員表示,,因為其要盡可能地保留患者大腦的正常部分,即使是技藝最精湛的外科醫(yī)生也無法保證腦瘤切除后不會遺留癌細胞,。這在惡性膠質(zhì)瘤的移除上表現(xiàn)得尤其明顯,,該種癌細胞可沿血管和神經(jīng)束輕易擴散,使健康組織發(fā)生病變,。此外,,源自原發(fā)腫瘤的微轉(zhuǎn)移,,也可在周圍健康組織生根發(fā)芽,,而這都是外科醫(yī)生無法用肉眼識別的。
新技術(shù)能借助包裹了成像試劑的黃金納米粒子,,突出小鼠的惡性膠質(zhì)瘤組織,,使手術(shù)更易進行。粒子的尺寸約為人類紅血球大小的1/60,??茖W(xué)家推測,這些粒子由小鼠尾部靜脈注射后會優(yōu)先在腫瘤內(nèi)“安家”,。納米粒子可沿血管抵達周圍的腫瘤組織,,粒子的黃金核心涂覆了含有釓的特殊涂層,可使粒子對3種不同的成像方式皆可見,,即磁共振成像(MRI),、光聲成像和拉曼成像,每種都能有效提升手術(shù)效果,。
MRI可在手術(shù)前較好地顯示腫瘤的邊緣及位置,,卻不能在手術(shù)過程中大腦處于動態(tài)時完整地描述腫瘤的侵略性增長。納米粒子的黃金核心能吸收光聲成像的光脈沖,,并隨著粒子微微升溫,,生成可檢測到的超聲信號,并從中計算出三維的腫瘤圖像,。由于這種成像方式可深度貫穿,,并對黃金粒子的存在十分敏感,其能保證在手術(shù)過程中對腫瘤邊緣的實時,、準(zhǔn)確描述,,引導(dǎo)醫(yī)生移除大部分腫瘤,提升移除精準(zhǔn)度,。但上述兩種方法都不能分辨出健康組織和癌變組織的區(qū)別,,拉曼成像可促使納米粒子的某一外涂層放射出波長不同的難以探測的光,黃金核心的表面能放大這些微弱的拉曼信號,,并能被特殊的顯微鏡捕捉到,。由于這些信號只會從藏身于腫瘤之中的納米粒子發(fā)出,,因此科研人員可輕易分辨出每一點殘留的癌變組織,使腫瘤的徹底清除更加容易,。
科研人員稱,,該技術(shù)有望在未來協(xié)助對致命性腦癌的預(yù)報,并可延伸至其他的腫瘤類型,。(生物谷Bioon.com)
doi:10.1038/nm.2721
PMC:
PMID:
A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle
Moritz F Kircher, Adam de la Zerda, Jesse V Jokerst, Cristina L Zavaleta, Paul J Kempen, Erik Mittra, Ken Pitter, Ruimin Huang, Carl Campos, Frezghi Habte, Robert Sinclair, Cameron W Brennan, Ingo K Mellinghoff, Eric C Holland & Sanjiv S Gambhir
The difficulty in delineating brain tumor margins is a major obstacle in the path toward better outcomes for patients with brain tumors. Current imaging methods are often limited by inadequate sensitivity, specificity and spatial resolution. Here we show that a unique triple-modality magnetic resonance imaging–photoacoustic imaging–Raman imaging nanoparticle (termed here MPR nanoparticle) can accurately help delineate the margins of brain tumors in living mice both preoperatively and intraoperatively. The MPRs were detected by all three modalities with at least a picomolar sensitivity both in vitro and in living mice. Intravenous injection of MPRs into glioblastoma-bearing mice led to MPR accumulation and retention by the tumors, with no MPR accumulation in the surrounding healthy tissue, allowing for a noninvasive tumor delineation using all three modalities through the intact skull. Raman imaging allowed for guidance of intraoperative tumor resection, and a histological correlation validated that Raman imaging was accurately delineating the brain tumor margins. This new triple-modality–nanoparticle approach has promise for enabling more accurate brain tumor imaging and resection.