來(lái)自Whitehead研究所的科學(xué)家們提出了一種與眾不同的癌癥治療新策略,,他們認(rèn)為可利用某些高水平表達(dá)于許多癌細(xì)胞表面的分子將致命毒性物質(zhì)運(yùn)送到惡性細(xì)胞中,。這一研究在線(xiàn)發(fā)表在12月2日的《自然—遺傳學(xué)》(Nature Genetics)雜志上。
Whitehead研究所成員,、麻省理工學(xué)院生物學(xué)教授,、霍華德休斯醫(yī)學(xué)研究所(HHMI)研究員David Sabatini表示盡管研究發(fā)現(xiàn)來(lái)自對(duì)某個(gè)有毒分子及其轉(zhuǎn)運(yùn)蛋白的研究,,這一現(xiàn)象可能具有更為廣泛的影響,。
Sabatini 說(shuō):“我們的研究提出了一種與眾不同的癌癥治療策略,。由于癌細(xì)胞能夠吸收正常細(xì)胞無(wú)法攝取的某些有毒物質(zhì),,因此借助這種能力可用有毒分子來(lái)殺死癌細(xì)胞。通過(guò)鑒別癌細(xì)胞表面的轉(zhuǎn)運(yùn)蛋白,,或許能夠找到通過(guò)特異的轉(zhuǎn)運(yùn)蛋白進(jìn)入細(xì)胞并對(duì)細(xì)胞產(chǎn)生毒性效應(yīng)的分子,。這樣就能更為選擇性地治療癌細(xì)胞。”
Sabatini 實(shí)驗(yàn)室博士后研究人員Kivanc Birsoy是論文的第一作者,,其采用Whitehead研究所前工作人員Thijn Brummelkamp開(kāi)發(fā)的一種特異的單倍體細(xì)胞系篩查了輔助3-bromopyruvate's (3-BrPA)進(jìn)入細(xì)胞的基因,。3-BrPA是一種處于臨床開(kāi)發(fā)中的有潛力的抗癌藥物,被認(rèn)為是通過(guò)抑制糖酵解(通過(guò)分解糖分子釋放能量的細(xì)胞過(guò)程)來(lái)發(fā)揮作用,。由于許多癌細(xì)胞都嚴(yán)重依賴(lài)糖酵解上調(diào),,破壞這一信號(hào)通路的藥物或許能夠有效地靶向這些糖酵解癌細(xì)胞。
通過(guò)篩查和大規(guī)模平行測(cè)序,,Birsoy確定了編碼單羧酸轉(zhuǎn)運(yùn)蛋白1(MCT1)的基因是將3-BrPA運(yùn)輸至細(xì)胞中的必要及充足條件。事實(shí)上,,糖酵解腫瘤細(xì)胞表面的MCT1水平可用于預(yù)測(cè)這些細(xì)胞對(duì)3-BrPA的敏感性:細(xì)胞MCT1表達(dá)水平越高,,它們對(duì)于3-BrPA就越敏感。研究人員在體內(nèi)外多個(gè)人類(lèi)癌細(xì)胞系模型中證實(shí)情況皆是如此,。
研究人員認(rèn)為可利用MCT1水平與3-BrPA敏感性之間存在的關(guān)聯(lián),,來(lái)確定如何治療某些惡性腫瘤。
Birsoy 說(shuō):“這項(xiàng)研究確定了MCT1是3-BrPA的一個(gè)生物標(biāo)記物,。因此在未來(lái),,如果3-BrPA獲得藥物批準(zhǔn),通過(guò)觀(guān)測(cè)MCT1的分子水平,,你大概可以預(yù)測(cè)某位患者的癌腫瘤是否將會(huì)對(duì)這一藥物敏感,。沒(méi)有MCT1的腫瘤將不會(huì)對(duì)3-BrPA治療產(chǎn)生反應(yīng)。”(生物谷Bioon.com)
doi:10.1038/ng.2471
PMC:
PMID:
MCT1-mediated transport of a toxic molecule is an effective strategy for targeting glycolytic tumors
Kivanç Birsoy,1, 2, 3, 4 Tim Wang,1, 2, 3, 4 Richard Possemato,1, 2, 3, 4 Omer H Yilmaz,1, 2, 3, 4 Catherine E Koch,1, 2 Walter W Chen,1, 2, 3, 4 Amanda W Hutchins,1, 2, 3, 4 Yetis Gultekin,1, 2, 3, 4 Tim R Peterson,1, 2, 3, 4 Jan E Carette,1, 6 Thijn R Brummelkamp,1, 6 Clary B Clish3 & David M Sabatini1, 2, 3, 4, 5
There is increasing evidence that oncogenic transformation modifies the metabolic program of cells. A common alteration is the upregulation of glycolysis, and efforts to target glycolytic enzymes for anticancer therapy are under way. Here, we performed a genome-wide haploid genetic screen to identify resistance mechanisms to 3-bromopyruvate (3-BrPA), a drug candidate that inhibits glycolysis in a poorly understood fashion. We identified the SLC16A1 gene product, MCT1, as the main determinant of 3-BrPA sensitivity. MCT1 is necessary and sufficient for 3-BrPA uptake by cancer cells. Additionally, SLC16A1 mRNA levels are the best predictor of 3-BrPA sensitivity and are most elevated in glycolytic cancer cells. Furthermore, forced MCT1 expression in 3-BrPA–resistant cancer cells sensitizes tumor xenografts to 3-BrPA treatment in vivo. Our results identify a potential biomarker for 3-BrPA sensitivity and provide proof of concept that the selectivity of cancer-expressed transporters can be exploited for delivering toxic molecules to tumors.