來自美國克利夫蘭醫(yī)學中心,、凱斯西儲大學和廈門大學的研究人員在新研究中證實,,膠質(zhì)母細胞瘤干細胞生成血管周細胞,支持了血管功能和腫瘤生長,。這一研究發(fā)現(xiàn)對于我們深入了解膠質(zhì)母細胞瘤發(fā)病機制,,開發(fā)出這一致命性疾病的靶向性新治療策略具有重要的意義。相關(guān)論文發(fā)表在3月28日的《細胞》(Cell)雜志上,。
領(lǐng)導這一研究的是克利夫蘭醫(yī)學中心的華人科學家鮑仕登(Shideng Bao)博士,,其現(xiàn)任廈門大學生命科學學院教授,。主要研究方向包括細胞DNA損傷檢控系統(tǒng)的信息傳導,細胞周期檢控系統(tǒng)功能失調(diào)與腫瘤發(fā)生的關(guān)系,,腫瘤血管形成分子機理及其與腫瘤的發(fā)展,,腫瘤的生物治療和預防,干細胞技術(shù)及其在醫(yī)學上的應(yīng)用,。
膠質(zhì)母細胞瘤(Glioblastoma Multiform,;GBM),世界衛(wèi)生組織命名為4型神經(jīng)膠質(zhì)瘤,。這種腫瘤生長快,,病程短,是一種最常見的腦膠質(zhì)瘤之一,,占膠質(zhì)瘤的25%以上,,也是最惡性的一種。目前主要的治療的方法就是手術(shù)切除與術(shù)后放療等結(jié)合,,由于至今未找到發(fā)病的關(guān)鍵環(huán)節(jié),,所以這些治療方案都不盡如意,膠母細胞瘤的治愈率很低,,存活期很短,。
近年來,腫瘤干細胞學說的提出為腫瘤的產(chǎn)生和治療提供了新的思路,。已有許多證據(jù)表明,,多種類型的膠質(zhì)瘤組織中存在一群具有干細胞特性的細胞,稱為膠質(zhì)瘤干細胞(glioma stem cell,,GSCs),。它與膠質(zhì)瘤的發(fā)生發(fā)展密切相關(guān)。深入了解這些膠質(zhì)瘤干細胞,,對我們正確認識和理解腦膠質(zhì)瘤的發(fā)生、發(fā)展及其生物學行為如侵襲性,、轉(zhuǎn)移,、腫瘤的耐藥性等均具有十分重要的理論意義和潛在的應(yīng)用價值。
由于膠質(zhì)瘤干細胞通常位于血管周圍微環(huán)境(nich)中,,有可能經(jīng)歷了間質(zhì)分化,,研究人員懷疑GSC是否有可能生成了血管周細胞。在這篇文章中,,研究人員證實膠質(zhì)瘤干細胞生成了周細胞,,支持了血管功能和腫瘤生長。
在體內(nèi)實驗中,,研究人員利用組成性和譜系特異性熒光報告系統(tǒng)進行細胞譜系追蹤,,證實膠質(zhì)瘤干細胞生成了大多數(shù)的血管周細胞,。當研究人員選擇性除去膠質(zhì)瘤干細胞源性周細胞時,發(fā)現(xiàn)其導致了新血管系統(tǒng)破壞,,有力抑制腫瘤生長,。分析人類膠質(zhì)母細胞瘤樣本,結(jié)果表明大部分周細胞都來源于瘤細胞,。在進一步的機制研究中,,研究人員證實膠質(zhì)瘤干細胞通過SDF-1/CXCR4信號軸朝著內(nèi)皮細胞轉(zhuǎn)化,隨后在轉(zhuǎn)化生長因子β(TGF-β)作用下誘導生成了周細胞,。
這些研究表明,,膠質(zhì)瘤干細胞促使生成了血管周細胞,有可能積極重塑了血管周圍微環(huán)境,。靶向治療膠質(zhì)瘤干細胞源性周細胞有可能是有效阻止腫瘤進展,,提高抗血管生成治療效果的一條有潛力的新途徑。(生物谷Bioon.com)
DOI:10.1016/j.cell.2013.02.021
PMC:
PMID:
Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth
Lin Cheng, Zhi Huang, Wenchao Zhou, Qiulian Wu, Shannon Donnola, James K. Liu, Xiaoguang Fang, Andrew E. Sloan, Yubin Mao, Justin D. Lathia, Wang Min, Roger E. McLendon, Jeremy N. Rich, Shideng BaoGlioblastomas (GBMs) are highly vascular and lethal brain tumors that display cellular hierarchies containing self-renewing tumorigenic glioma stem cells (GSCs). Because GSCs often reside in perivascular niches and may undergo mesenchymal differentiation, we interrogated GSC potential to generate vascular pericytes. Here, we show that GSCs give rise to pericytes to support vessel function and tumor growth. In vivo cell lineage tracing with constitutive and lineage-specific fluorescent reporters demonstrated that GSCs generate the majority of vascular pericytes. Selective elimination of GSC-derived pericytes disrupts the neovasculature and potently inhibits tumor growth. Analysis of human GBM specimens showed that most pericytes are derived from neoplastic cells. GSCs are recruited toward endothelial cells via the SDF-1/CXCR4 axis and are induced to become pericytes predominantly by transforming growth factor β. Thus, GSCs contribute to vascular pericytes that may actively remodel perivascular niches. Therapeutic targeting of GSC-derived pericytes may effectively block tumor progression and improve antiangiogenic therapy.