計算機模擬演示精確的表現(xiàn)了作用力是如何分布在啄木鳥的頭骨上的
研究人員通過慢放的鏡頭揭示啄木鳥啄食的滑稽動作
據(jù)BBC自然科學網(wǎng)報道,,啄木鳥的頭以6米每秒的速度啄食的同時,,也在承受著超過千倍重力的加速度。研究人員表示,,不同長度的上下喙和海綿構造的層狀骨架結(jié)構保護了啄木鳥的大腦,。
啄木鳥的大腦和頭骨之間存在著小小的硬腦膜,,這樣就不會像人類一樣發(fā)生腦震蕩。而且它們的大腦上下尺寸長于前后的尺寸,,這就意味著作用在頭骨上的力量被更好的分散了,。
科學家通過研究發(fā)現(xiàn)了一種叫做舌骨的成熟骨骼,而人類只有喉結(jié)上方存在這種骨骼,。舌骨從鳥嘴下面開始一直延續(xù)到鼻孔,,分布于頭骨的下面和四周,越過頭骨頂部最終在前額處匯合,。
這項新研究的合作者之一,,香港工業(yè)大學的張明說他和他的同事想用定量分析來尋求真相,。他告訴BBC記者,之前的大多數(shù)研究被定性答案限制了,,更多的定量分析對于回答這個有趣的問題是非常有必要的,,這項研究將對人類生命保護裝置的設計,甚至一些工業(yè)設計有著重要幫助,。
研究人員設置一個特定的環(huán)境觀察啄木鳥,,他們用傳感器測試啄食的力度,并用兩臺慢鏡頭攝像機將捕捉這些啄食的鏡頭,。研究人員利用計算機斷層掃描和掃描電子顯微鏡收集啄木鳥頭骨的分析數(shù)據(jù),,詳細標注了這些部分是如何組合的以及骨頭密度的變化位置。借助收集到的數(shù)據(jù),,科學家能夠使用電腦模擬演示啄木鳥啄食過程中對頭骨產(chǎn)生的作用力,。
研究人員通過模擬演示發(fā)現(xiàn)有三個因素能夠減少作用力對啄木鳥的傷害。首先,,環(huán)繞整個頭骨的舌骨結(jié)構在最初的沖擊中扮演著安全帶的作用,。其次,鳥嘴的上下部位不均等,,當撞擊力從鳥嘴尖傳遞到骨頭的時候,,這種結(jié)構削弱沖擊力并使它遠離了大腦。最后,,頭骨不同部位的“海綿”構造的層狀骨骼能夠幫助分散沖擊力,,因此也能保護大腦。
研究人員強調(diào),,保護啄木鳥大腦不受傷害是這三個因素的綜合作用,,而不是其中的任何一個的單獨作用。這個發(fā)現(xiàn)將幫助科學家設計出更加有效的保護裝置來保護人類大腦,。(生物谷 Bioon.com)
doi:10.1371/journal.pone.0026490
PMC:
PMID:
Why Do Woodpeckers Resist Head Impact Injury: A Biomechanical Investigation
Lizhen Wang,,Jason Tak-Man Cheung, Fang Pu, Deyu Li, Ming Zhang, Yubo Fan
Head injury is a leading cause of morbidity and death in both industrialized and developing countries. It is estimated that brain injuries account for 15% of the burden of fatalities and disabilities, and represent the leading cause of death in young adults. Brain injury may be caused by an impact or a sudden change in the linear and/or angular velocity of the head. However, the woodpecker does not experience any head injury at the high speed of 6–7 m/s with a deceleration of 1000 g when it drums a tree trunk. It is still not known how woodpeckers protect their brain from impact injury. In order to investigate this, two synchronous high-speed video systems were used to observe the pecking process, and the force sensor was used to measure the peck force. The mechanical properties and macro/micro morphological structure in woodpecker's head were investigated using a mechanical testing system and micro-CT scanning. Finite element (FE) models of the woodpecker's head were established to study the dynamic intracranial responses. The result showed that macro/micro morphology of cranial bone and beak can be recognized as a major contributor to non-impact-injuries. This biomechanical analysis makes it possible to visualize events during woodpecker pecking and may inspire new approaches to prevention and treatment of human head injury.