英國,、德國及丹麥科學(xué)家近日研究表明,,人類和果蠅等簡單有機(jī)體的巨大差別不在于基因數(shù),,而在于他們體內(nèi)蛋白質(zhì)相互作用(protein interactions)的數(shù)量,。相關(guān)論文5月12日在線發(fā)表于美國《國家科學(xué)院院刊》(PNAS)上,。
蛋白質(zhì)之間的相互作用存在于人體所有的生理學(xué)系統(tǒng)中,,當(dāng)人體消化食物,、對溫度變化做出反應(yīng)、抵御感染等的時候,,無數(shù)的蛋白相互作用就會聯(lián)合在一起,。然而,直到現(xiàn)在科學(xué)家都無法估算出不同有機(jī)體內(nèi)蛋白質(zhì)相互作用的量,。
在最新的研究中,,英國倫敦帝國理工學(xué)院生命科學(xué)系的Michael Stumpf和同事設(shè)計了一種新穎的數(shù)學(xué)工具,結(jié)合相關(guān)數(shù)據(jù)能夠估計出一個有機(jī)體蛋白質(zhì)相互作用網(wǎng)絡(luò)的尺寸,。
結(jié)果顯示,,人體內(nèi)蛋白質(zhì)相互作用的數(shù)量大約為65萬,是果蠅的10倍,,是單細(xì)胞酵母等的20倍,。這與之前基因數(shù)的比較結(jié)果相差巨大——人類的基因數(shù)大約為24000,果蠅的大約為14000,,二者相差不到2倍,。
Stumpf表示,“科學(xué)家一度認(rèn)為,有機(jī)體體內(nèi)蛋白質(zhì)相互作用的復(fù)雜性決定了他的生物學(xué)復(fù)雜性,。但是因?yàn)殍b別和描繪這些相互作用的研究并不多,,所以迄今尚無法估算出一個有機(jī)體內(nèi)蛋白質(zhì)相互作用網(wǎng)絡(luò)的尺寸,也無法與其它有機(jī)體進(jìn)行比較,。”
研究人員將人體內(nèi)蛋白質(zhì)相互作用的總數(shù)稱作“人類相互作用組”(human interactome),,意在與人類基因組相比較。
Stumpf說:“僅僅了解人類基因組肯定不足以解釋我們與其它物種的差別,。我們的研究表明,,蛋白質(zhì)相互作用應(yīng)該是一把開啟生物體之間差別程度原因之鎖的鑰匙。”
下一步,,研究人員計劃根據(jù)物種間的仔細(xì)比較結(jié)果來做出更加詳細(xì)的估計,。這對理解某些現(xiàn)象至關(guān)重要,比如,,為什么面包酵母對于面包和啤酒的生產(chǎn)很重要,,而有些與它進(jìn)化關(guān)系很近的種類卻會導(dǎo)致高致死率的真菌感染。
生物谷推薦原始出處:
PNAS,,doi:10.1073/pnas.0708078105,,Michael P. H. Stumpf,Carsten Wiuf
Estimating the size of the human interactome
Michael P. H. Stumpf,,, Thomas Thorne, Eric de Silva, Ronald Stewart, Hyeong Jun An¶, Michael Lappe¶, and Carsten Wiuf,||
Division of Molecular Biosciences, Imperial College London, Wolfson Building, London SW7 2AZ, United Kingdom; Institute of Mathematical Sciences, Imperial College London, London SW7 2AZ, United Kingdom; ||Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; and ¶Bioinformatics Research Center, University of Aarhus, 8000 Aarhus C, Denmark
Edited by Burton H. Singer, Princeton University, Princeton, NJ, and approved February 19, 2008 (received for review August 27, 2007)
Abstract
After the completion of the human and other genome projects it emerged that the number of genes in organisms as diverse as fruit flies, nematodes, and humans does not reflect our perception of their relative complexity. Here, we provide reliable evidence that the size of protein interaction networks in different organisms appears to correlate much better with their apparent biological complexity. We develop a stable and powerful, yet simple, statistical procedure to estimate the size of the whole network from subnet data. This approach is then applied to a range of eukaryotic organisms for which extensive protein interaction data have been collected and we estimate the number of interactions in humans to be 650,000. We find that the human interaction network is one order of magnitude bigger than the Drosophila melanogaster interactome and 3 times bigger than in Caenorhabditis elegans