生物谷:我國二硫鍵蛋白質(zhì)組學的研究取得新突破,。近日出版的《美國科學院院刊》(PNAS),發(fā)表了華東理工大學生物反應器工程國家重點實驗室及藥學院教授楊弋,、哈佛大學醫(yī)學院教授Joseph Loscalzo合作完成的論文《哺乳動物細胞中線粒體對二硫鍵蛋白質(zhì)組的調(diào)節(jié)》。
這項研究成果,對了解二硫鍵的形成及其對生命的調(diào)控,,以及相關重大疾病機制研究與治療具有重要意義。
兩位審稿人對該研究結果給予肯定評價:“論文作者建立了一個新的并且十分有效的方法來對細胞內(nèi)二硫鍵進行成像,,并發(fā)現(xiàn)線粒體產(chǎn)生的活性氧分子直接參與了細胞表面的二硫鍵形成,。該研究非常重要,實驗工作十分詳盡并令人印象深刻,。該研究將改變我們對線粒體在基于二硫鍵的信號轉導和蛋白質(zhì)折疊的理解,。”“作者首次漂亮地顯示了線粒體來源的活性氧參與細胞表面蛋白質(zhì)二硫鍵形成,并通過這一新機制調(diào)節(jié)了這些蛋白質(zhì)的折疊與轉運,。”
據(jù)專家介紹,,二硫鍵是指蛋白質(zhì)內(nèi)兩個半胱氨酸殘基之間自然形成的橋鍵,其形成是細胞內(nèi)蛋白質(zhì)合成過程中的一個關鍵步驟,。然而,,長期以來人們一直不能直接在細胞內(nèi)觀察二硫鍵的形成,,有關二硫鍵蛋白質(zhì)組的形成與細胞功能關系的研究領域進展緩慢,。針對這一關鍵技術的國際空白,楊弋建立了一種靈敏,、特異性的熒光標記方法,,首次通過成像方法成功觀察到細胞內(nèi)二硫鍵的位置與水平。利用這種方法,,他們在細胞對蛋白質(zhì)二硫鍵的調(diào)控研究上獲得突破性進展,,發(fā)現(xiàn)伴隨線粒體呼吸產(chǎn)生的活性氧被細胞利用形成細胞表面蛋白質(zhì)中的二硫鍵。而線粒體這一細胞“能量工廠”功能的改變,,可以影響二硫鍵的水平,進而調(diào)節(jié)這些蛋白質(zhì)的折疊,、轉運及功能,。
長期以來,,人們通常認為二硫鍵是固定的、結構性的蛋白質(zhì)化學修飾,,而不像蛋白質(zhì)磷酸化那樣高度動態(tài),,并且參與細胞信號轉導、調(diào)節(jié)細胞功能,。但近期研究發(fā)現(xiàn),少數(shù)定位在還原性的細胞漿中的蛋白質(zhì)也會受細胞氧化還原狀態(tài)影響形成暫時的二硫鍵,,從而影響蛋白質(zhì)功能與細胞性狀,。楊弋等的研究將這種調(diào)節(jié)性二硫鍵的范圍,擴展到最主要的二硫鍵蛋白質(zhì)組,,即細胞分泌途徑蛋白質(zhì)組。(科學時報)
原始出處:
Published online before print June 20, 2007, 10.1073/pnas.0702027104
PNAS | June 26, 2007 | vol. 104 | no. 26 | 10813-10817
Regulation of the protein disulfide proteome by mitochondria in mammalian cells
Yi Yang*,, Yanli Song*, and Joseph Loscalzo*,
*Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Edited by Pedro M. Cuatrecasas, University of California at San Diego School of Medicine, Rancho Santa Fe, CA, and approved April 27, 2007 (received for review March 5, 2007)
The majority of protein disulfides in cells is considered an important inert structural, rather than a dynamic regulatory, determinant of protein function. Here, we show that some disulfides in proteins also are regulated by cell redox status with functional consequences. We find that reactive oxygen species (ROS) produced by mitochondria are actively used by cells to facilitate cell-surface protein disulfide formation, as well as folding and transport, in mammalian cells. Inhibition of mitochondrial ROS production suppresses protein disulfide formation and induces reductive stress, leading to dysfunction and retention (possibly in the Golgi, in part) of a group of cell-surface disulfide-containing proteins. Sparsely cultured cells produce less ROS than confluent cells do, which leads to decreased disulfide formation and decreased activity of a subgroup of disulfide-containing cell-surface receptors. These data support the concept of two subproteomes comprising the disulfide proteome, a structural group and a redox-sensitive regulatory group, with the latter having direct functional consequences for the cell.
oxidative stress | redox potential | reactive oxygen species | protein thiol