生物谷:我國(guó)二硫鍵蛋白質(zhì)組學(xué)的研究取得新突破,。近日出版的《美國(guó)科學(xué)院院刊》(PNAS),發(fā)表了華東理工大學(xué)生物反應(yīng)器工程國(guó)家重點(diǎn)實(shí)驗(yàn)室及藥學(xué)院教授楊弋,、哈佛大學(xué)醫(yī)學(xué)院教授Joseph Loscalzo合作完成的論文《哺乳動(dòng)物細(xì)胞中線粒體對(duì)二硫鍵蛋白質(zhì)組的調(diào)節(jié)》,。
這項(xiàng)研究成果,對(duì)了解二硫鍵的形成及其對(duì)生命的調(diào)控,,以及相關(guān)重大疾病機(jī)制研究與治療具有重要意義,。
兩位審稿人對(duì)該研究結(jié)果給予肯定評(píng)價(jià):“論文作者建立了一個(gè)新的并且十分有效的方法來(lái)對(duì)細(xì)胞內(nèi)二硫鍵進(jìn)行成像,并發(fā)現(xiàn)線粒體產(chǎn)生的活性氧分子直接參與了細(xì)胞表面的二硫鍵形成,。該研究非常重要,,實(shí)驗(yàn)工作十分詳盡并令人印象深刻。該研究將改變我們對(duì)線粒體在基于二硫鍵的信號(hào)轉(zhuǎn)導(dǎo)和蛋白質(zhì)折疊的理解,。”“作者首次漂亮地顯示了線粒體來(lái)源的活性氧參與細(xì)胞表面蛋白質(zhì)二硫鍵形成,,并通過(guò)這一新機(jī)制調(diào)節(jié)了這些蛋白質(zhì)的折疊與轉(zhuǎn)運(yùn)。”
據(jù)專(zhuān)家介紹,,二硫鍵是指蛋白質(zhì)內(nèi)兩個(gè)半胱氨酸殘基之間自然形成的橋鍵,,其形成是細(xì)胞內(nèi)蛋白質(zhì)合成過(guò)程中的一個(gè)關(guān)鍵步驟。然而,,長(zhǎng)期以來(lái)人們一直不能直接在細(xì)胞內(nèi)觀察二硫鍵的形成,,有關(guān)二硫鍵蛋白質(zhì)組的形成與細(xì)胞功能關(guān)系的研究領(lǐng)域進(jìn)展緩慢。針對(duì)這一關(guān)鍵技術(shù)的國(guó)際空白,,楊弋建立了一種靈敏,、特異性的熒光標(biāo)記方法,首次通過(guò)成像方法成功觀察到細(xì)胞內(nèi)二硫鍵的位置與水平,。利用這種方法,,他們?cè)诩?xì)胞對(duì)蛋白質(zhì)二硫鍵的調(diào)控研究上獲得突破性進(jìn)展,發(fā)現(xiàn)伴隨線粒體呼吸產(chǎn)生的活性氧被細(xì)胞利用形成細(xì)胞表面蛋白質(zhì)中的二硫鍵,。而線粒體這一細(xì)胞“能量工廠”功能的改變,,可以影響二硫鍵的水平,進(jìn)而調(diào)節(jié)這些蛋白質(zhì)的折疊,、轉(zhuǎn)運(yùn)及功能,。
長(zhǎng)期以來(lái),,人們通常認(rèn)為二硫鍵是固定的、結(jié)構(gòu)性的蛋白質(zhì)化學(xué)修飾,,而不像蛋白質(zhì)磷酸化那樣高度動(dòng)態(tài),,并且參與細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)、調(diào)節(jié)細(xì)胞功能,。但近期研究發(fā)現(xiàn),,少數(shù)定位在還原性的細(xì)胞漿中的蛋白質(zhì)也會(huì)受細(xì)胞氧化還原狀態(tài)影響形成暫時(shí)的二硫鍵,從而影響蛋白質(zhì)功能與細(xì)胞性狀,。楊弋等的研究將這種調(diào)節(jié)性二硫鍵的范圍,,擴(kuò)展到最主要的二硫鍵蛋白質(zhì)組,即細(xì)胞分泌途徑蛋白質(zhì)組,。(科學(xué)時(shí)報(bào))
原始出處:
Published online before print June 20, 2007, 10.1073/pnas.0702027104
PNAS | June 26, 2007 | vol. 104 | no. 26 | 10813-10817
Regulation of the protein disulfide proteome by mitochondria in mammalian cells
Yi Yang*,, Yanli Song*, and Joseph Loscalzo*,
*Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
Edited by Pedro M. Cuatrecasas, University of California at San Diego School of Medicine, Rancho Santa Fe, CA, and approved April 27, 2007 (received for review March 5, 2007)
The majority of protein disulfides in cells is considered an important inert structural, rather than a dynamic regulatory, determinant of protein function. Here, we show that some disulfides in proteins also are regulated by cell redox status with functional consequences. We find that reactive oxygen species (ROS) produced by mitochondria are actively used by cells to facilitate cell-surface protein disulfide formation, as well as folding and transport, in mammalian cells. Inhibition of mitochondrial ROS production suppresses protein disulfide formation and induces reductive stress, leading to dysfunction and retention (possibly in the Golgi, in part) of a group of cell-surface disulfide-containing proteins. Sparsely cultured cells produce less ROS than confluent cells do, which leads to decreased disulfide formation and decreased activity of a subgroup of disulfide-containing cell-surface receptors. These data support the concept of two subproteomes comprising the disulfide proteome, a structural group and a redox-sensitive regulatory group, with the latter having direct functional consequences for the cell.
oxidative stress | redox potential | reactive oxygen species | protein thiol