維生素B12標(biāo)示會出現(xiàn)在你的麥片盒和維生素瓶的一側(cè)上,。維生素B12像所有其他維生素和礦物質(zhì)一樣,,是飲食中的營養(yǎng)物質(zhì)。
但是,,維生素B12是什么時候進(jìn)入到你身體內(nèi)的呢,,這項(xiàng)新的研究表明維生素B12會變成一個“體操運(yùn)動員”。
據(jù)密歇根大學(xué)健康系統(tǒng)和麻省理工學(xué)院的科學(xué)家最近發(fā)表在《自然》雜志上的研究論文表明,,他們已經(jīng)獲得了首個維生素B12及其伴侶分子扭轉(zhuǎn)的3-D圖像,。蛋白扭轉(zhuǎn)是甲基轉(zhuǎn)移的的關(guān)鍵一步反應(yīng)。
這種反應(yīng)對于無論是人體細(xì)胞還是細(xì)菌細(xì)胞消耗二氧化碳和一氧化碳都是至關(guān)重要的,。這些細(xì)菌包括生活在人類,、牛和其他動物內(nèi)臟中有助于消化的細(xì)菌。這項(xiàng)新的研究對生活在混濁的池塘底部的消耗二氧化碳的細(xì)菌中維生素B12復(fù)合物展開研究,。
研究團(tuán)隊(duì)產(chǎn)生的3-D圖像首次揭示了B12發(fā)揮其生物學(xué)基本功能的錯綜復(fù)雜的分子機(jī)制,。他們揭示了這一反應(yīng)為一多階段的過程,研究人員發(fā)現(xiàn)多階段的過程涉及到一個精制的蛋白框架,,這一關(guān)鍵反應(yīng)的復(fù)雜機(jī)制令研究人員甚是驚訝,。
生物化學(xué)教授Ragsdale解釋說:如果沒有B12和其伴侶分子B9(又稱葉酸)參與單碳單位轉(zhuǎn)移,,心臟疾病和出生缺陷的可能性很大。同樣,,依靠這種反應(yīng)的細(xì)菌將無法消耗二氧化碳或一氧化碳來生存,。
這種細(xì)菌叫厭氧菌,這一反應(yīng)使生物體靠一氧化碳生活,,而二氧化碳是一個直接關(guān)系到氣候變化的溫室氣體,。 Ragsdale指出目前工業(yè)上在利用Wood-Ljungdahl途徑去生成液體燃料和化學(xué)品。
在得到的圖像中,,科學(xué)家們揭示了分子是如何復(fù)雜扭動成多個構(gòu)象的,,首先是激活,然后進(jìn)行對維生素B12分子催化,。他們已經(jīng)分離出Moorella thermoacetica細(xì)菌的這類蛋白復(fù)合物,。
圖片由強(qiáng)烈的X射線光束照射蛋白質(zhì)復(fù)合體的結(jié)晶形式產(chǎn)生,每個原子內(nèi)部的位置被精確確定,。
作者指出:這篇論文使得我們進(jìn)一步了解了這種微生物過程中關(guān)鍵步驟之一的顯著的構(gòu)象運(yùn)動,,這一步驟包括一系列有機(jī)中間體的生成,生產(chǎn)的有機(jī)中間體導(dǎo)致關(guān)鍵代謝中間物的生成——乙酰輔酶A,。
麻省理工學(xué)院,、霍華德休斯醫(yī)學(xué)研究所、文章主要作者Catherine L. Drennan的在澳大醫(yī)學(xué)院的博士補(bǔ)充說:我們預(yù)計(jì)這種B族維生素之間的甲基轉(zhuǎn)化必須涉及某些類型的構(gòu)象變化,。
除了Ragsdale和Drennan,,研究團(tuán)隊(duì)還包括第一作者麻省理工學(xué)院的Yan Kung、文章合著者麻省理工學(xué)院的Nozomi Ando,,前麻省理工學(xué)院的研究人員Tzanko Doukov等人,。
這項(xiàng)研究是由美國國家衛(wèi)生研究院和麻省理工學(xué)院能源倡議。(生物谷:Bioon)
doi:10.1038/nature10916
PMC:
PMID:
Visualizing molecular juggling within a B12-dependent methyltransferase complex.
Yan Kung, Nozomi Ando, Tzanko I. Doukov, Leah C. Blasiak, Güne Bender, Javier Seravalli, Stephen W. Ragsdale, Catherine L. Drennan.
Derivatives of vitamin B12 are used in methyl group transfer in biological processes as diverse as methionine synthesis in humans and CO2 fixation in acetogenic bacteria1, 2, 3. This seemingly straightforward reaction requires large, multimodular enzyme complexes that adopt multiple conformations to alternately activate, protect and perform catalysis on the reactive B12 cofactor. Crystal structures determined thus far have provided structural information for only fragments of these complexes4, 5, 6, 7, 8, 9, 10, 11, 12, inspiring speculation about the overall protein assembly and conformational movements inherent to activity. Here we present X-ray crystal structures of a complete 220?kDa complex that contains all enzymes responsible for B12-dependent methyl transfer, namely the corrinoid iron–sulphur protein and its methyltransferase from the model acetogen Moorella thermoacetica. These structures provide the first three-dimensional depiction of all protein modules required for the activation, protection and catalytic steps of B12-dependent methyl transfer. In addition, the structures capture B12 at multiple locations between its ‘resting’ and catalytic positions, allowing visualization of the dramatic protein rearrangements that enable methyl transfer and identification of the trajectory for B12 movement within the large enzyme scaffold. The structures are also presented alongside in crystallo spectroscopic data, which confirm enzymatic activity within crystals and demonstrate the largest known conformational movements of proteins in a crystalline state. Taken together, this work provides a model for the molecular juggling that accompanies turnover and helps explain why such an elaborate protein framework is required for such a simple, yet biologically essential reaction.