即使當我們正在休息的時候,,機體內(nèi)仍然充斥著各種生理活動,。機體就像一個永久處于交通高峰期的微觀大都市,,在這熙熙攘攘的有機社會中,,數(shù)以萬億計的細胞在活躍地進行著監(jiān)管,、修復,、合成和運輸,。
要保證一切正確運行,就需要對機體內(nèi)各種各樣的工作者們進行組織和指導,。而蛋白激酶就是這樣的信號燈,,它們發(fā)布著開始和停止的信息,對于細胞通訊的許多方面非常關(guān)鍵,。
蛋白激酶的催化域中含有多種保守殘基,,但此前這些殘基被認為沒有功能,因此對它們的研究也比較少?,F(xiàn)在,,喬治亞大學的研究人員發(fā)現(xiàn)這些保守殘基實際上控制著蛋白激酶最關(guān)鍵的功能,他們在對蛋白激酶超家族進行張力分析的基礎(chǔ)上指出,,蛋白激酶的主干張力與上述保守殘基共同演化負責蛋白催化活性的別構(gòu)調(diào)節(jié),。文章發(fā)表在近期的美國國家科學院院刊PNAS雜志上。
“這一研究的總體目標是,,更好地了解蛋白激酶的作用機制及其控制機制,,”喬治亞大學生化和分子生物學助理教授Natarajan Kannan說。“研究顯示,這些從前被忽視了的蛋白區(qū)域?qū)っ富钚杂兄苯佑绊憽?rdquo;
正常功能的蛋白激酶是細胞日常運作中的核心,,當它們發(fā)生功能故障時,,就會引發(fā)許多嚴重疾病,包括阿爾茨海默癥,、糖尿病,、心血管病及多種癌癥。
數(shù)十年前,,科學家們就已經(jīng)認識到蛋白激酶作為治療靶點的價值,,人們常常用被稱為蛋白激酶抑制劑的藥物對引發(fā)疾病的激酶進行抑制。研究人員希望他們的新發(fā)現(xiàn)不僅有助于研發(fā)新藥,,也能夠幫助人們對現(xiàn)有藥物進行改進,。
“這為抗擊多種疾病尤其是癌癥,開辟了新的作戰(zhàn)前線,,”文章的第一作者,,博后Krishnadev Oruganty說。
從頭開始新藥研發(fā)是一個相當漫長又費錢的過程,,但這項研究增進了人們對蛋白激酶開關(guān)機制的了解,,將有助于以較低成本對現(xiàn)有藥物進行修飾,從而增強藥物效力,。
“蛋白激酶對于生物醫(yī)學產(chǎn)業(yè)來說是非常重要的,,制藥公司在靶標這類蛋白的藥物上已經(jīng)投入了龐大的資金,” Kannan說,。“對現(xiàn)有藥物進行微調(diào)以增加效力是更為可行的方法,,我們的研究將會對制藥產(chǎn)業(yè)產(chǎn)生巨大影響。”
研究人員正在利用這一新發(fā)現(xiàn)進行藥物設(shè)計,,不過他們指出還需要進一步研究來完善整個方法,。他們相信,不論是對生命基礎(chǔ)元件研究還是制藥產(chǎn)業(yè),,這一發(fā)現(xiàn)都將產(chǎn)生深遠影響,。
“我們細胞中的每個基礎(chǔ)信號通路都由這些蛋白控制,” Kannan說,。“進一步了解蛋白激酶的作用機理,,將帶來更多新的重要發(fā)現(xiàn)。”(生物谷Bioon.com)
doi: 10.1073/pnas.1207104110
PMC:
PMID:
Identification of a hidden strain switch provides clues to an ancient structural mechanism in protein kinases
Krishnadev Orugantya, Nakul Suhas Talathia, Zachary A. Wooda, and Natarajan Kannana,b,1
The protein kinase catalytic domain contains several conserved residues of unknown functions. Here, using a combination of computational and experimental approaches, we show that the function of some of these residues is to maintain the backbone geometry of the active site in a strained conformation. Specifically, we find that the backbone geometry of the catalytically important HRD motif deviates from ideality in high-resolution structures and the strained geometry results in favorable hydrogen bonds with conserved noncatalytic residues in the active site. In particular, a conserved aspartate in the F-helix hydrogen bonds to the strained HRD backbone in diverse eukaryotic and eukaryotic-like protein kinase crystal structures. Mutations that alter this hydrogen-bonding interaction impair catalytic activity in Aurora kinase. Although the backbone strain is present in most active conformations, several inactive conformations lack the strain because of a peptide flip in the HRD backbone. The peptide flip is correlated with loss of hydrogen bonds with the F-helix aspartate as well as with other interactions associated with kinase regulation. Within protein kinases that are regulated by activation loop phosphorylation, the strained residue is an arginine, which coordinates with the activation loop phosphate. Based on analysis of strain across the protein kinase superfamily, we propose a model in which backbone strain co-evolved with conserved residues for allosteric control of catalytic activity. Our studies provide new clues for the design of allosteric protein kinase inhibitors.