一個國際科研小組日前完成了水?;蚪M的測序工作,,相關(guān)成果3月14日公布在英國《自然》Nature雜志網(wǎng)絡(luò)版上,。
水螅是一種腔腸動物,,大多雌雄同體,,通常進行無性生殖,,夏初或秋末進行有性生殖。測序結(jié)果顯示,,水?;驍?shù)目與人類基因相似,二者也分享了諸多相同基因,。令科學家們驚訝的是,,水螅也存在與亨廷頓舞蹈癥以及阿爾茨海默氏癥相關(guān)的基因,這表明,,水螅將來可能成為研究這兩種疾病的模型,。
亨廷頓舞蹈癥是一種遺傳性腦病,癥狀表現(xiàn)為舞蹈性運動以及認知和行為障礙,。阿爾茨海默氏癥是較常見的老年癡呆癥,,臨床表現(xiàn)為認知、記憶和語言功能出現(xiàn)障礙,。兩種疾病目前都無有效療法,。
水螅基因組測序項目24年啟動,,研究資金由美國國家人類基因組研究所提供,。參與測序工作的加州大學歐文分校羅伯特·斯蒂爾表示:“完成水?;蚪M測序也提高了我們利用水螅進一步研究干細胞基本生物學特征的能力,,后者在治療損傷和疾病方面具有巨大潛力。”(生物谷Bioon.com)
相關(guān)閱讀
Science:首個家庭基因組測繪完成
深圳華大基因研究院領(lǐng)銜完成第一張蒙古人基因組圖譜
Nature:新一代合成法成功繪制大熊貓基因組圖譜
Science:玉米B73系基因組序列
PLoS Biology:成功繪制出蚜蟲基因組圖譜
Science:家蠶基因組測序成功
生物谷推薦原文出處:
Nature advance online publication 14 March 2010 | doi:10.1038/nature08830
The dynamic genome of Hydra
Jarrod A. Chapman1,21, Ewen F. Kirkness2,21, Oleg Simakov3,4,21, Steven E. Hampson5,22, Therese Mitros4, Thomas Weinmaier6, Thomas Rattei6, Prakash G. Balasubramanian3, Jon Borman2, Dana Busam2, Kathryn Disbennett2, Cynthia Pfannkoch2, Nadezhda Sumin2, Granger G. Sutton2, Lakshmi Devi Viswanathan2, Brian Walenz2, David M. Goodstein1, Uffe Hellsten1, Takeshi Kawashima4, Simon E. Prochnik1, Nicholas H. Putnam1,4,23, Shengquiang Shu1, Bruce Blumberg7,8, Catherine E. Dana8,9, Lydia Gee7,8, Dennis F. Kibler5, Lee Law7,8, Dirk Lindgens7,8, Daniel E. Martinez10, Jisong Peng7,8, Philip A. Wigge11,23, Bianca Bertulat3, Corina Guder3, Yukio Nakamura3, Suat Ozbek3, Hiroshi Watanabe3, Konstantin Khalturin12, Georg Hemmrich12, André Franke12, René Augustin12, Sebastian Fraune12, Eisuke Hayakawa13, Shiho Hayakawa13, Mamiko Hirose13, Jung Shan Hwang13, Kazuho Ikeo13, Chiemi Nishimiya-Fujisawa13, Atshushi Ogura13,23, Toshio Takahashi14, Patrick R. H. Steinmetz15, Xiaoming Zhang16, Roland Aufschnaiter17, Marie-Kristin Eder17, Anne-Kathrin Gorny17,23, Willi Salvenmoser17, Alysha M. Heimberg18, Benjamin M. Wheeler19, Kevin J. Peterson18, Angelika B?ttger20, Patrick Tischler6, Alexander Wolf20, Takashi Gojobori13, Karin A. Remington2,23, Robert L. Strausberg2, J. Craig Venter2, Ulrich Technau15, Bert Hobmayer17, Thomas C. G. Bosch12, Thomas W. Holstein3, Toshitaka Fujisawa13, Hans R. Bode7,8, Charles N. David20, Daniel S. Rokhsar1,4 & Robert E. Steele8,9
The freshwater cnidarian Hydra was first described in 17021 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals2. Today, Hydra is an important model for studies of axial patterning3, stem cell biology4 and regeneration5. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis 6 and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann–Mangold organizer, pluripotency genes and the neuromuscular junction.
1 US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
2 The J. Craig Venter Institute, Rockville, Maryland 20850, USA
Institute of Zoology, Department of Molecular Evolution and Genomics, University of Heidelberg, D-69120 Heidelberg, Germany
Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
Department of Computer Science, University of California, Irvine, California 92697-3435, USA
Department of Genome-Oriented Bioinformatics, Technische Universit?t München, D-85354 Freising, Germany
Department of Developmental and Cell Biology,
Developmental Biology Center, University of California, Irvine, California 92697-2275, USA
Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
Department of Biology, Pomona College, Claremont, California 91711, USA
The Salk Institute, La Jolla, California 92037, USA
Zoologisches Institüt, Christian-Albrechts-University, D-24098 Kiel, Germany
National Institute of Genetics, Yata 1, 111, Mishima 411-8540, Japan
Suntory Institute for Bioorganic Research, Osaka 618-8503, Japan
Department of Molecular Evolution and Development, University of Vienna, A-1090 Vienna, Austria
Department of Anatomy and Cell Biology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
Institute of Zoology and Center for Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria
Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
Department of Computer Science, North Carolina State University, Raleigh, North Carolina 27695, USA
Department of Biology II, Ludwig-Maximilians-University, D-82152 Planegg-Martinsried, Germany
These authors contributed equally to this work.
Deceased.
Present addresses: Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK (P.A.W.); Institute of Human Genetics, University of Heidelberg, D-69120 Heidelberg, Germany (A.-K.G.); Center for Bioinformatics and Computational Biology, National Institute of General Medical Sciences, Bethesda, Maryland 20892-6200, USA (K.A.R.); Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas 77251-1892, USA (N.H.P.); Ochadai Academic Production, Ochanomizu University, Ohtsuka, Bunkyo, 1128610 Tokyo, Japan (A.O.).