道,,日前,研究人員最新研究發(fā)現(xiàn)亞馬遜河流域的樹棲螞蟻能夠使用臀部有效地控制空中滑翔的方向,。
亞馬遜流域Cephalotes atratus螞蟻可利用臀部和腿部控制滑翔方向,實(shí)現(xiàn)安全著陸
滑翔又被科學(xué)家稱為“定向空中下降”,,此前科學(xué)家曾觀測蛇和松鼠存在著類似的機(jī)能,,能夠?qū)崿F(xiàn)無翅膀滑翔飛行。但這種螞蟻擁有奇特的“滑翔秘笈”,,它不同于其它滑翔物種,,并沒有特殊的身體附屬物來控制下降過程。然而這種奇特的螞蟻卻可使用后腿和臀部來控制空中下降路線,。
美國加利福尼亞州大學(xué)伯克利分校研究員尤娜坦-穆克(Yonatan Munk)稱,,其它滑翔物種具有一些身體特征可解釋其“潛在的空氣動(dòng)力學(xué)”,例如:松鼠的尾部和蛇擺動(dòng)的軀體,。但如果你看到這種螞蟻,,你不會(huì)相信它們具有空中滑翔能力,肯定會(huì)從空中直線墜落,。
據(jù)悉,,穆克用4年時(shí)間旅行亞馬遜河流域,細(xì)致充分地研究這種樹棲螞蟻“Cephalotes atratus”,。使用特殊設(shè)計(jì)的垂直風(fēng)洞,,他和同事們能夠拍攝和分析該螞蟻控制滑翔的精確性動(dòng)作。
當(dāng)這些螞蟻從樹上棲息地跳下時(shí),,將在空中利用后背“翻筋斗”,,伸展腿部抬起自己的身體,之后降低自己的臀部或者后半段身體,。在這種情況下,,體形微小的螞蟻能夠充分實(shí)現(xiàn)空氣動(dòng)力學(xué),在沒有翅膀的情況下,,有效地控制滑翔過程,。
穆克說:“它們的滑翔過程非常類似于人類跳傘運(yùn)動(dòng)員,其原理機(jī)制是近似的,。”(生物谷Bioon.com)
生物谷推薦原文出處:
Proceedings of The Royal Society B:Biological Sciences doi: 10.1098/rspb.2010.0170
Aerial manoeuvrability in wingless gliding ants (Cephalotes atratus)
Stephen P. Yanoviak, Yonatan Munk, Mike Kaspari and Robert Dudley
In contrast to the patagial membranes of gliding vertebrates, the aerodynamic surfaces used by falling wingless ants to direct their aerial descent are unknown. We conducted ablation experiments to assess the relative contributions of the hindlegs, midlegs and gaster to gliding success in workers of the Neotropical arboreal ant Cephalotes atratus (Hymenoptera: Formicidae). Removal of hindlegs significantly reduced the success rate of directed aerial descent as well as the glide index for successful flights. Removal of the gaster alone did not significantly alter performance relative to controls. Equilibrium glide angles during successful targeting to vertical columns were statistically equivalent between control ants and ants with either the gaster or the hindlegs removed. High-speed video recordings suggested possible use of bilaterally asymmetric motions of the hindlegs to effect body rotations about the vertical axis during targeting manoeuvre. Overall, the control of gliding flight was remarkably robust to dramatic anatomical perturbations, suggesting effective control mechanisms in the face of adverse initial conditions (e.g. falling upside down), variable targeting decisions and turbulent wind gusts during flight.