據(jù)美國每日科學(xué)網(wǎng)近日報道,英國劍橋大學(xué)和英國生態(tài)與水文中心一項新的研究發(fā)現(xiàn),,雖然氣候變暖會加快植物尤其是熱帶雨林的生長速度,,但枯落物也會隨之增加,并刺激土壤微生物釋放出比以往更多的二氧化碳,。如果氣候變暖沒有得到遏制,,更多更茂盛的森林或許無助于減少空氣中的二氧化碳。相關(guān)論文發(fā)表在《自然—氣候變化》雜志在線版,。
該項目以史密森熱帶研究所一項長達6年的實驗為依據(jù),,對位于巴拿馬、中美洲熱帶雨林的枯落物(如落到地面的落葉,、樹皮和樹枝等)進行了研究,,試圖查清這些枯落物在碳循環(huán)中的作用。研究結(jié)果顯示,,“額外的枯落物”會觸發(fā)所謂的“啟動效應(yīng)”,,刺激原先儲存在土壤中的碳發(fā)生分解和釋放。
負(fù)責(zé)該項研究的英國生態(tài)與水文中心博士艾瑪·薩耶爾說:“大多數(shù)科學(xué)家在對熱帶森林的碳封存能力進行估算時,,都依賴于對樹木生長的測量,,認(rèn)為樹木生長越快其固碳能力越強。然而,,我們的研究表明,,樹木和土壤之間的相互作用在碳循環(huán)中扮演著重要角色,。樹木生長所吸收的二氧化碳中大部分極有可能被土壤中流失的碳所抵消。用現(xiàn)有氣候變化模型預(yù)測未來大氣中二氧化碳水平時,,應(yīng)該將這一點考慮在內(nèi),。”
研究人員估計,對熱帶低地雨林而言,,凋落物每增加30%,,每公頃土壤所釋放的二氧化碳就會增加0.6噸。熱帶雨林覆蓋面積廣闊,,儲存著大量的二氧化碳,,一直都在調(diào)節(jié)氣候和維持全球碳平衡中發(fā)揮著重要作用,這一數(shù)據(jù)應(yīng)當(dāng)引起人們的注意,。
人類活動造成了二氧化碳含量的上升,,但不少人卻認(rèn)為這些二氧化碳會加速樹木和其他植物的生長速度,從而增加對碳的吸收,,讓人類所面臨的困境得以改善,。然而,樹木在加速生長的同時,,也產(chǎn)生了更多的枯落物,,這些返回地面的有機物將對碳循環(huán)產(chǎn)生重要影響。薩耶爾補充說,,一直以來土壤都被認(rèn)為是一個長期穩(wěn)定的碳存儲介質(zhì),,但新研究表明,如果大氣中二氧化碳水平和土壤中氮沉積量持續(xù)增加并導(dǎo)致植物快速生長,,這種固碳作用將會大打折扣,。
論文合著者、劍橋大學(xué)博士埃德·蒙唐納說,,這種啟動效應(yīng)意味著,,土壤中原先所儲存的那些相對穩(wěn)定的碳被容易分解的“新鮮碳”所取代。在一個較長時期內(nèi),,該效應(yīng)對碳循環(huán)和整個生態(tài)環(huán)境產(chǎn)生的影響目前還不得而知,。(生物谷 Biooon.com)
doi:10.1038/nclimate1190
PMC:
PMID:
Soil carbon release enhanced by increased tropical forest litterfall
Emma J. Sayer; Matthew S. Heard; Helen K. Grant; Toby R. Marthews; Edmund V. J. Tanner
Tropical forests are a critical component of the global carbon cycle1 and their response to environmental change will play a key role in determining future concentrations of atmospheric carbon dioxide (CO2)1, 2. Increasing primary productivity in tropical forests over recent decades has been attributed to CO2 fertilization3, and greater biomass in tropical forests could represent a substantial sink for carbon in the future3, 4. However, the carbon sequestration capacity of tropical forest soils is uncertain and feedbacks between increased plant productivity and soil carbon dynamics remain unexplored5, 6. Here, we show that experimentally increasing litterfall in a lowland tropical forest enhanced carbon release from the soil. Using a large-scale litter manipulation experiment combined with carbon isotope measurements, we found that the efflux of CO2 derived from soil organic carbon was significantly increased by litter addition. Furthermore, this effect was sustained over several years. We predict that a future increase in litterfall of 30% with an increase in atmospheric CO2 concentrations of 150 ppm could release about 0.6 t C ha−1 yr−1 from the soil, partially offsetting predicted net gains in carbon storage. Thus, it is essential that plant–soil feedbacks are taken into account in predictions of the carbon sequestration potential of tropical forests.