從國際空間站看到的地球的稀薄的可呼吸的大氣
12月1日,Rensselaer技術研究所的紐約天文生物學中心的布魯斯-沃森所帶領的研究團隊在《自然》上發(fā)表了他們最新的研究結果"The oxidation state of Hadean magmas and implications for early Earth’s atmosphere",,沃森稱:“人們總是認為地球上的條件‘一開始’是非常簡化的,,因為最初硅酸鹽物質(zhì)(最終形成地幔)和形成地核的鐵元素是混合在一起的,元素(簡化的)鐵的存在暗示簡化的條件,因此也暗示簡化的氣體諸如甲烷,、硫化氫和氨氣”,??茖W家使用術語“簡化的”來描述只有有限的氧的條件,。
關于早期地球,被廣泛地接受的觀點是,,那時的大氣充斥著有毒的甲烷、一氧化碳,、硫化氫以及氨氣,,持續(xù)的氧化條件僅在地球23億歲時,,即約地球目前年齡的一半時,才開始,。
沃森和他的同事現(xiàn)在把這個假設顛倒了過來,他們認為早期大氣可能由更多的富含氧氣的化合物組成,,這些化合物在目前的地球大氣內(nèi)存在--包括水,、二氧化碳和二氧化硫。
地球的大氣由火山活動釋放的氣體形成的理論,,這個研究小組在實驗室里重構了巖漿形成的條件,,檢驗是什么氣體在那些巖漿內(nèi)存在,。當巖漿通過地球的內(nèi)部,它或者噴發(fā)到地面,,或者在地下凝固。對早期地球的巖漿條件的研究努力變得非常困難,,因為事實是,地球在不斷地循環(huán)其地殼,,因此幾乎沒有地球歷史的最初5億年的證據(jù),。然而,鋯是那個時期留下的唯一礦物,,年齡超過40億歲,能夠提供回溯那個時期的窗口,。
“我們使用一個‘指數(shù)’來度量氧壓,采用一種罕見的地球元素鈰的比率的形式,,”沃森解釋道,。鈰是一種有用的對氧豐度的度量,,因為它能夠具有兩種不同的氧化態(tài),取決于系統(tǒng)內(nèi)氧的壓力,。“鋯礦內(nèi)的鈰比率,我們在實驗室里把它作為氧壓的函數(shù)進行校正,,然后應用到古老的鋯礦。”
這項研究揭示了鈰的氧化程度更高的那種化合物的數(shù)量較高,,這意味著早期地球的火山氣體相對地氧化程度更高,更像那些今天的火山噴發(fā)出的氣體,。然而,,沃森補充道,,他們的結論并不暗示早期大氣內(nèi)有大量的自由氧,;生命花費了--15億年--才把氧的水平提高到目前的情況。
因為人們并不認為氧化的大氣是生命的偉大起點--甲烷和其貧氧的相似化合物為從無機化合物到氨基酸和DNA提供了一個好得多的進步之階--這個新結論對確切地理解生命怎樣和何時在這顆行星上開始,,以及生命的成份是否確實是從宇宙的其它地方過來的,具有指導意義,。(生物谷 Bioon.com)
doi:10.1038/nature10655
PMC:
PMID:
The oxidation state of Hadean magmas and implications for early Earth’s atmosphere
Dustin Trail,E. Bruce Watson & Nicholas D. Tailby
Magmatic outgassing of volatiles from Earth’s interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago1. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron–wüstite buffer would yield volatile species such as CH4, H2, H2S, NH3 and CO, whereas melts close to the fayalite–magnetite–quartz buffer would be similar to present-day conditions and would be dominated by H2O, CO2, SO2 and N2 (refs 1–4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth’s history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ~4,400 Myr (refs 5–8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite–magnetite–quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas2, 3, 4, 9, 10 as early as ~4,350 Myr before present. These results suggest that outgassing of Earth’s interior later than ~200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.