科學家們創(chuàng)造了完全受他們控制的蠕蟲“小機器人”。
他們使用的是激光點,。他們可以用它來讓蠕蟲左轉、停止或是產卵。研究人員將他們的研究成果發(fā)表在1月16日的《自然—方法學》網絡版上,。
研究人員用激光系統(tǒng)(左)刺激線蟲的神經細胞來操控其行為
不過,,這個叫做CoLBeRT(實時移動與行為控制)的系統(tǒng)并不只是創(chuàng)造一個沒有思維的僵尸蠕蟲。它讓科學家們能夠逐個細胞地分解復雜的行為,。
未參與該研究的多倫多大學生物學家威廉·劉說:“這個系統(tǒng)確實很不同尋常,。它在理解行為方面取得了重要的進展。”
透明而微小的線蟲特別容易受到用光線進行的意識控制,。這種蟲子還有一個好處,,那就是研究人員知道其所有302個神經細胞的準確位置。但在此之前,,沒有什么好的辦法來對每個細胞進行研究,,尤其是對一個蠕動的動物體內的細胞。
該研究的共同作者,、哈佛大學的安德魯·萊費爾說:“這個工具讓我們能夠進入其內部,,在動物移動的過程中撥弄和刺激其神經細胞。”
該系統(tǒng)基于新興的光遺傳學領域,,在該領域中,,光被用來開啟或關閉細胞。萊費爾和他的同事將光敏分子植入蠕蟲體內特定的細胞群中,。
隨后,,該研究小組開發(fā)的一個計算機程序在顯微鏡中定位目標細胞。一旦找到該細胞,,程序就引導激光,,讓一小束光擊中細胞。
萊費爾說:“我們用光照射神經細胞的時候,,我們只對那一個神經細胞進行撞擊,,不碰到其他任何東西。”
找到細胞并用光撞擊目標的整個過程約需要20毫秒,。隨著蠕蟲位置的改變,,其信息反饋給計算機程序,激光會進行調整,。如果蠕蟲爬得太遠,,裝有馬達的顯微鏡載臺會將它拉回來。
威廉·劉說,,這種新方法最大的一個好處就是它能用于移動的動物,。“這些蟲子不是用什么東西固定起來的———它們自由移動。能讓你看到這種真正不受約束的有機體的系統(tǒng)并不多,。”
由位于亞特蘭大的佐治亞技術學院的杰弗里·斯特曼領導的另一組科學家則宣布了一項類似的對蠕蟲進行意識控制的技術,,同樣發(fā)表在1月16日的《自然—方法學》網絡版上。
威廉·劉說,兩種方法是類似的,, CoLBeRT法似乎更快一些,,但如果蠕蟲爬行緩慢,那么斯特曼小組使用的辦法可能在激光瞄準方面更加精確,。“兩篇論文對于從整體上理解行為是否都有幫助,?的確如此。”(生物谷Bioon.com)
生物谷推薦原文出處:
Nature Methods doi:10.1038/nmeth.1554
Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans
Andrew M Leifer,Christopher Fang-Yen,Marc Gershow,Mark J Alkema& Aravinthan D T Samuel
We present an optogenetic illumination system capable of real-time light delivery with high spatial resolution to specified targets in freely moving Caenorhabditis elegans. A tracking microscope records the motion of an unrestrained worm expressing channelrhodopsin-2 or halorhodopsin in specific cell types. Image processing software analyzes the worm's position in each video frame, rapidly estimates the locations of targeted cells and instructs a digital micromirror device to illuminate targeted cells with laser light of the appropriate wavelengths to stimulate or inhibit activity. Because each cell in an unrestrained worm is a rapidly moving target, our system operates at high speed (~50 frames per second) to provide high spatial resolution (~30 μm). To test the accuracy, flexibility and utility of our system, we performed optogenetic analyses of the worm motor circuit, egg-laying circuit and mechanosensory circuits that have not been possible with previous methods.
Nature Methods doi:10.1038/nmeth.1555
Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans
Jeffrey N Stirman,Matthew M Crane,Steven J Husson,Sebastian Wabnig,Christian Schultheis,Alexander Gottschalk& Hang Lu
The ability to optically excite or silence specific cells using optogenetics has become a powerful tool to interrogate the nervous system. Optogenetic experiments in small organisms have mostly been performed using whole-field illumination and genetic targeting, but these strategies do not always provide adequate cellular specificity. Targeted illumination can be a valuable alternative but it has only been shown in motionless animals without the ability to observe behavior output. We present a real-time, multimodal illumination technology that allows both tracking and recording the behavior of freely moving C. elegans while stimulating specific cells that express channelrhodopsin-2 or MAC. We used this system to optically manipulate nodes in the C. elegans touch circuit and study the roles of sensory and command neurons and the ultimate behavioral output. This technology enhances our ability to control, alter, observe and investigate how neurons, muscles and circuits ultimately produce behavior in animals using optogenetics.