生物谷報(bào)道:人類的耳朵非常精巧,它能夠辨別不同的聲音頻率,無(wú)論這些音調(diào)是高還是低,是近還是遠(yuǎn),。在1月10日的《自然》雜志上,來(lái)自美國(guó)加州大學(xué)洛杉磯分校的神經(jīng)外科教授Itzhak Fried和同事公布說(shuō),,他們的最新研究證實(shí)在人類中,,一個(gè)大腦中一個(gè)單個(gè)的聽覺神經(jīng)元對(duì)一個(gè)非常窄的聲音頻率范圍(一個(gè)音階的十分之一)具有一種驚人的選擇性。
事實(shí)上,,這種神經(jīng)元鑒別聲音頻率的最輕微差異的能力超過(guò)了人類聽覺神經(jīng)靈敏度的30倍,。人類聽覺皮層接收到的這種頻率是明顯優(yōu)于其他非人類哺乳動(dòng)物(除了蝙蝠)。
有趣的是,,研究人員也指出,,即使沒有接受過(guò)音樂訓(xùn)練的人的聽覺神經(jīng)元也能檢測(cè)出比外周聽覺神經(jīng)所不能檢測(cè)到的極其微小的頻率差異。利用其他外圍神經(jīng)(如皮膚中的神經(jīng)),,人類檢測(cè)兩個(gè)點(diǎn)之間的差異的能力受到皮膚受體的限制,。但是在用耳朵聽時(shí),這種神經(jīng)元的靈敏度超出了任何的外周神經(jīng)元,。
研究人員將電極移植到受試患者不同的大腦位置,,這些位置包括可能與抓狂有關(guān)的區(qū)域,也包括聽覺皮層,。當(dāng)患者聽人為制造的不同曲調(diào)的隨機(jī)合音時(shí),,研究人員對(duì)患者大腦活動(dòng)進(jìn)行了記錄。
測(cè)試結(jié)果讓研究人員很驚訝,。人類的一個(gè)單個(gè)的聽覺神經(jīng)元在辨別極其細(xì)微的頻率差異時(shí),,具有驚人的分辨力。
研究人員評(píng)價(jià)說(shuō),,這項(xiàng)研究室神經(jīng)生物研究力量的最新的典范,即利用來(lái)自活人大腦的單神經(jīng)元水平的數(shù)據(jù)進(jìn)行研究,。該實(shí)驗(yàn)室之前的研究鑒定出人類海馬體中負(fù)責(zé)人類導(dǎo)航的單個(gè)神經(jīng)元和能夠翻譯不同視覺圖像的單個(gè)細(xì)胞等,。
此前,在2005年的《自然·遺傳學(xué)》上的一篇論文曾在弄清聽覺形成的遺傳途徑方面前進(jìn)了一步,。這篇文章詳細(xì)描述了耳朵中聽覺毛細(xì)胞(sensory hair cells)形成能夠接受聲音的獨(dú)特形狀的過(guò)程,。
長(zhǎng)在耳蝸里的毛細(xì)胞能夠?qū)⒁月暡ㄐ问降臋C(jī)械振動(dòng)轉(zhuǎn)化成化學(xué)信號(hào),然后傳遞給大腦,。Emory大學(xué)醫(yī)學(xué)院的陳萍(音譯)博士和她的同事發(fā)現(xiàn)耳蝸和毛細(xì)胞的發(fā)育依賴于一個(gè)叫做PCP(planar cell polarity)的遺傳途徑,。這個(gè)與耳朵發(fā)育有關(guān)的途徑的發(fā)現(xiàn)可能幫助研究人員了解一些耳聾的分子和遺傳基礎(chǔ),并為恢復(fù)聽覺的研究提供重要的線索。
在過(guò)去的20年間,,研究人員弄清了毛細(xì)胞特殊的不對(duì)稱形狀是它們正常行使功能的關(guān)鍵部分,,但是卻不清楚到底是哪個(gè)基因與耳蝸中的這種不對(duì)稱形狀的形成有關(guān)。利用小鼠模型,,陳博士和她的研究組發(fā)現(xiàn)PCP途徑與耳蝸和聽覺毛細(xì)胞的成形有關(guān),。這個(gè)基因途徑中的突變會(huì)影響耳蝸的形狀和聽覺毛細(xì)胞的極化。
生物谷推薦原始出處:
Nature 451, 197-201 (10 January 2008) | doi:10.1038/nature06476; Received 17 June 2007; Accepted 14 November 2007
Ultra-fine frequency tuning revealed in single neurons of human auditory cortex
Y. Bitterman1,2, R. Mukamel3,4, R. Malach5, I. Fried4,6 & I. Nelken1,2
Department of Neurobiology, Life Science Institute,
Interdisciplinary Center for Neural Computation, Hebrew University, Jerusalem 91904, Israel
Ahmanson-Lovelace Brain Mapping Center, David Geffen School of Medicine,
Division of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behaviour, University of California Los Angeles (UCLA), Los Angeles, California 90095, USA
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
Correspondence to: I. Fried4,6I. Nelken1,2 Correspondence and requests for materials should be addressed to I.N. (Email: [email protected]) or to I.F. (Email: [email protected]).
Abstract
Just-noticeable differences of physical parameters are often limited by the resolution of the peripheral sensory apparatus. Thus, two-point discrimination in vision is limited by the size of individual photoreceptors. Frequency selectivity is a basic property of neurons in the mammalian auditory pathway1, 2. However, just-noticeable differences of frequency are substantially smaller than the bandwidth of the peripheral sensors3. Here we report that frequency tuning in single neurons recorded from human auditory cortex in response to random-chord stimuli is far narrower than that typically described in any other mammalian species (besides bats), and substantially exceeds that attributed to the human auditory periphery. Interestingly, simple spectral filter models failed to predict the neuronal responses to natural stimuli, including speech and music. Thus, natural sounds engage additional processing mechanisms beyond the exquisite frequency tuning probed by the random-chord stimuli.