小腦和大腦皮層都可以收到來自體覺系統(tǒng)的輸入信息,。有人曾經(jīng)指出,,這兩個區(qū)域的相互作用可以通過正確選擇和執(zhí)行指令來完成,。但目前科學(xué)家尚不清楚的是:這種相互作用是如何發(fā)生的。
在大腦皮層,,信息輸入會引起有節(jié)律的變化,,從而為信息的輸入和隨后的輸出提供了一個時空編碼策略,。在6月12日的《神經(jīng)元》(Neuron)雜志上,Middleton等人報道了發(fā)生在小腦的煙堿受體亞型激活期的類似節(jié)律變化模式,。伽馬振蕩(30–80 Hz)和非??焖僬袷帲╒FOs, 80–160 Hz)都在缺乏功能谷氨酸的連接時,由小腦內(nèi)皮層的電路所產(chǎn)生,。作為在新大腦皮層,,伽瑪節(jié)律依賴于伽馬氨基丁酸(GABAA)受體介導(dǎo)的抑制作用,而VFOs只需要非經(jīng)典連接的細(xì)胞間網(wǎng)絡(luò),。
小腦皮層作為新皮層在同一頻率段范圍內(nèi)產(chǎn)生節(jié)律變化的能力表明,,頻率帶作為一項共同的時空代碼,也可能會發(fā)生小腦皮質(zhì)的信息傳遞,。(生物谷Bioon.com)
生物谷推薦原始出處:
Neuron,,Vol 58, 763-774, 12 June 2008,Steven J. Middleton, Miles A. Whittington
High-Frequency Network Oscillations in Cerebellar Cortex
Steven J. Middleton,1,4 Claudia Racca,1 Mark O. Cunningham,1 Roger D. Traub,2 Hannah Monyer,3 Thomas Knöpfel,4 Ian S. Schofield,5 Alistair Jenkins,5 and Miles A. Whittington1,
1 Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
2 Departments of Physiology, Pharmacology, and Neurology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
3 Department of Clinical Neurobiology, University Hospital of Neurology, IZN, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
4 Laboratory for Neuronal Circuit Dynamics, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
5 Regional Neurosciences Center, Newcastle General Hospital, Newcastle upon Tyne, NE7 7DN, UK
Corresponding author
Miles A. Whittington
[email protected]
Summary
Both cerebellum and neocortex receive input from the somatosensory system. Interaction between these regions has been proposed to underpin the correct selection and execution of motor commands, but it is not clear how such interactions occur. In neocortex, inputs give rise to population rhythms, providing a spatiotemporal coding strategy for inputs and consequent outputs. Here, we show that similar patterns of rhythm generation occur in cerebellum during nicotinic receptor subtype activation. Both gamma oscillations (30–80 Hz) and very fast oscillations (VFOs, 80–160 Hz) were generated by intrinsic cerebellar cortical circuitry in the absence of functional glutamatergic connections. As in neocortex, gamma rhythms were dependent on GABAA receptor-mediated inhibition, whereas VFOs required only nonsynaptically connected intercellular networks. The ability of cerebellar cortex to generate population rhythms within the same frequency bands as neocortex suggests that they act as a common spatiotemporal code within which corticocerebellar dialog may occur.