圖片說明:科學(xué)家得到了首張完整的高清晰度人類大腦皮層地圖,,并從中確定出了單一的網(wǎng)絡(luò)核心,。
(圖片來源:Indiana University)
一支國際科研小組最近創(chuàng)建出首張完整的大腦網(wǎng)絡(luò)地圖,它的精細(xì)程度無與倫比,。該圖反映了人類大腦皮層中負(fù)責(zé)高等思維的數(shù)百萬神經(jīng)纖維,,如何相互連接和“交談”,。更為重要的突破是,,研究人員從中確定出了一個(gè)大腦單一網(wǎng)絡(luò)核心(network core),,它對(duì)于左右腦半球的工作都至關(guān)重要。新研究標(biāo)志著人類在理解自身最復(fù)雜和最神秘器官上的一大進(jìn)步,,相關(guān)論文發(fā)表在6月30日的《公共科學(xué)圖書館 生物學(xué)》(PLoS Biology)上。
進(jìn)行該項(xiàng)研究的科學(xué)家來自美國印第安那大學(xué),、哈佛大學(xué)醫(yī)學(xué)院,、瑞士洛桑大學(xué)和洛桑聯(lián)邦理工學(xué)院等機(jī)構(gòu)院所。他們?cè)谖恼轮胁粌H提供了大腦連接的綜合地圖,,同時(shí)也描述了一種新型無創(chuàng)技術(shù),,以便其他科學(xué)家能夠?qū)?gòu)建數(shù)萬億大腦神經(jīng)聯(lián)系的高清晰地圖工作進(jìn)行到底。這已經(jīng)成為了一個(gè)新的科學(xué)領(lǐng)域——“神經(jīng)連接組學(xué)”(connectomics),。
論文作者之一,、美國印第安那大學(xué)的神經(jīng)學(xué)家Olaf Sporns說,“新的研究是構(gòu)建大規(guī)模大腦計(jì)算模型,,進(jìn)而幫助科學(xué)家理解一些難以觀測(cè)的過程(比如疾病狀態(tài)和損傷修復(fù))的最初一步,。”
科學(xué)家大都利用功能核磁共振成像(fMRI)技術(shù)測(cè)定感覺或認(rèn)知過程中的大腦活動(dòng)性區(qū)域,,但卻對(duì)產(chǎn)生這種活動(dòng)性的深層解剖學(xué)因素所知甚少。此外,,科學(xué)家對(duì)大腦神經(jīng)纖維連接和路徑的認(rèn)識(shí)大都來自動(dòng)物研究,,到目前為止,還沒有一張人類大腦聯(lián)系的完整地圖,。
在最新研究中,,研究人員利用先進(jìn)的擴(kuò)散核磁共振技術(shù)(Diffusion MRI)對(duì)人類大腦進(jìn)行成像,這種無創(chuàng)成像技術(shù)主要依據(jù)水分子在腦組織中的擴(kuò)散來評(píng)估神經(jīng)纖維連接的軌道,。而該技術(shù)的高敏感度變種——擴(kuò)散光譜成像(diffusion spectrum imaging,,簡(jiǎn)稱DSI),則能夠描述通過某一位置的多重神經(jīng)纖維的定向性,。最新研究正是將該技術(shù)應(yīng)用于整個(gè)人類大腦皮層,,才得到了其中數(shù)百萬神經(jīng)纖維的網(wǎng)絡(luò)地圖。
進(jìn)一步的計(jì)算分析表明,,人類大腦皮層中存在著對(duì)神經(jīng)連通性起中樞作用的區(qū)域,,研究人員形象地將其稱為大腦的“集線器”(hub)。令人驚訝的是,,研究表明所有受試者的大腦都擁有單一的高度密集連接的結(jié)構(gòu)核,。
Sporns表示,,“我們發(fā)現(xiàn)該結(jié)構(gòu)核位于大腦皮層的中央后部,它同時(shí)騎跨著左右腦半球,。這是以前人們不知道的,。”而接下來的問題就是新的大腦連接網(wǎng)絡(luò)是否負(fù)責(zé)塑造著大腦的動(dòng)態(tài)活動(dòng)性,。為了驗(yàn)證這一點(diǎn),研究人員利用fMRI和DSI兩種方法檢驗(yàn)了5位受試者的大腦,,并比較觀測(cè)到的大腦活性與深層神經(jīng)纖維網(wǎng)絡(luò)間的接近度。
Sporns說,,“結(jié)果表明,它們關(guān)系十分緊密,。我們可以測(cè)定出了大腦解剖學(xué)和大腦動(dòng)力學(xué)的顯著相關(guān)性,。這意味著如果知道大腦如何連接,我們就能預(yù)測(cè)它將做什么,。”
研究人員正打算對(duì)更多的人類大腦進(jìn)行檢測(cè),,以期得到不同發(fā)育階段,、年齡以及疾病中的大腦連通性。(生物谷bioon.com)
生物谷推薦原始出處:
PLoS Biology,,6(7): e159 doi:10.1371/journal.pbio.0060159,,Patric Hagmann, Olaf Sporns
Mapping the Structural Core of Human Cerebral Cortex
Patric Hagmann1,2, Leila Cammoun2, Xavier Gigandet2, Reto Meuli1, Christopher J. Honey3, Van J. Wedeen4, Olaf Sporns3*
1 Department of Radiology, University Hospital Center and University of Lausanne (CHUV), Lausanne, Switzerland, 2 Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 3 Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America, 4 Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
Structurally segregated and functionally specialized regions of the human cerebral cortex are interconnected by a dense network of cortico-cortical axonal pathways. By using diffusion spectrum imaging, we noninvasively mapped these pathways within and across cortical hemispheres in individual human participants. An analysis of the resulting large-scale structural brain networks reveals a structural core within posterior medial and parietal cerebral cortex, as well as several distinct temporal and frontal modules. Brain regions within the structural core share high degree, strength, and betweenness centrality, and they constitute connector hubs that link all major structural modules. The structural core contains brain regions that form the posterior components of the human default network. Looking both within and outside of core regions, we observed a substantial correspondence between structural connectivity and resting-state functional connectivity measured in the same participants. The spatial and topological centrality of the core within cortex suggests an important role in functional integration.
Funding. PH, LC, XG, and RM were supported by a grant for interdisciplinary biomedical research to the University of Lausanne, the Department of Radiology of University Hospital Center in Lausanne (CHUV), the Center for Biomedical Imaging (CIBM) of the Geneva - Lausanne Universities and the Ecole Polytechnique Fédérale de Lausanne (EPFL), as well as grants from the foundations Leenaards and Louis-Jeantet and Mr Yves Paternot. VJW was supported by the National Institutes of Health grant 1R01-MH64–44. CJH and OS were supported by the JS McDonnell Foundation.