圖片說(shuō)明:小鼠胚胎期間接收某個(gè)蛋白的額外副本會(huì)產(chǎn)生更多的關(guān)鍵聽覺細(xì)胞(底部),。
(圖片來(lái)源:David Woessner, John Mitchell, and John V. Brigande)
美國(guó)科學(xué)家近日為聽力損失患者帶來(lái)了福音,。他們?cè)谛∈篌w內(nèi)制成了關(guān)鍵的聽覺細(xì)胞,,并首次證實(shí)這些細(xì)胞能與自然的耳部細(xì)胞一樣發(fā)揮作用。相關(guān)論文8月27日在線發(fā)表于《自然》(Nature)雜志上,。
在聽覺系統(tǒng)中,,內(nèi)耳在柯蒂氏器(Organ of Corti)中將聲波轉(zhuǎn)換成電信號(hào),,柯蒂氏器上布滿了15000至20000個(gè)毛發(fā)狀細(xì)胞,。這些細(xì)胞對(duì)振動(dòng)作出反應(yīng),,產(chǎn)生電刺激通過(guò)神經(jīng)傳給大腦。這是一個(gè)脆弱的系統(tǒng)——高分貝的聲音會(huì)損傷毛發(fā)狀細(xì)胞,,機(jī)體老化也會(huì)使它們衰竭,,從而導(dǎo)致聽力損失??茖W(xué)家推測(cè),可以通過(guò)替換這些毛發(fā)細(xì)胞來(lái)恢復(fù)部分聽力功能,。之前的研究鑒別出一種名為Atoh1的蛋白,,它可以觸發(fā)毛發(fā)細(xì)胞的生長(zhǎng)。但是這些人工形成的細(xì)胞是否與天然細(xì)胞具有一樣的功能并不清楚,。
在最新的研究中,,美國(guó)俄勒岡健康與科學(xué)大學(xué)的發(fā)育神經(jīng)生物學(xué)家John Brigande和同事,將含有Atoh1的DNA注入小鼠胚胎中,。注入的時(shí)間選擇在小鼠出生前大約一周——即在能鑒別出哪塊組織將長(zhǎng)成內(nèi)耳之后,,和在毛發(fā)細(xì)胞開始形成之前。小鼠出生四天后,,研究人員檢查了它們的毛發(fā)細(xì)胞,。
結(jié)果發(fā)現(xiàn),產(chǎn)生了額外Atoh1的小鼠生成的毛發(fā)細(xì)胞量大約是對(duì)照小鼠的兩倍,。電子顯微鏡檢測(cè)顯示,,與自然的毛發(fā)細(xì)胞一樣,額外的毛發(fā)細(xì)胞也分化成內(nèi)部和外部毛發(fā)細(xì)胞,而且額外的毛發(fā)細(xì)胞與自然細(xì)胞生成相同的蛋白,。緊接著,,研究人員確定出,這些人工細(xì)胞能夠?qū)β暡ㄗ鞒龇磻?yīng),,并可將它們轉(zhuǎn)換成電信號(hào),。
Brigande表示,這一發(fā)現(xiàn)顯示了Atoh1替換治療能夠在動(dòng)物體內(nèi)產(chǎn)生有活性的毛發(fā)細(xì)胞,。他說(shuō):“這很令人激動(dòng),,它為聽覺損失的細(xì)胞替換策略研究提供了強(qiáng)大的基本原理。”
其他一些兒科專家也對(duì)此表示贊同,。美國(guó)國(guó)立失聰與其它交流障礙研究所的發(fā)育神經(jīng)學(xué)家Matthew Kelley稱贊了此次研究的方法,。他說(shuō):“這是一項(xiàng)嶄新的技術(shù),在內(nèi)耳研究方面,,這曾經(jīng)是一個(gè)主要的挑戰(zhàn)和障礙,。”
美國(guó)密歇根大學(xué)安娜堡分校的聽覺神經(jīng)學(xué)家Yehoash Raphael認(rèn)為,這一發(fā)現(xiàn)為那些設(shè)法利用發(fā)育基因修復(fù)聽力喪失的研究人員樹立了全新的模式,。不過(guò)他同時(shí)提醒說(shuō),,在研究人員開發(fā)出適合人類的治療方法之前,還存在以下一些問題——需要多少個(gè)副本的Atoh1以刺激毛發(fā)細(xì)胞的再生,?以及將這一基因送入人類柯蒂氏器的最好方法是什么,?等等。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature,,doi:10.1038/nature07265,,Samuel P. Gubbels,John V. Brigande
Functional auditory hair cells produced in the mammalian cochlea by in utero gene transfer
Samuel P. Gubbels1,4,5, David W. Woessner1,4,5, John C. Mitchell2, Anthony J. Ricci3 & John V. Brigande1
Sensory hair cells in the mammalian cochlea convert mechanical stimuli into electrical impulses that subserve audition1, 2. Loss of hair cells and their innervating neurons is the most frequent cause of hearing impairment3. Atonal homologue 1 (encoded by Atoh1, also known as Math1) is a basic helix–loop–helix transcription factor required for hair-cell development4, 5, 6, and its misexpression in vitro 7, 8 and in vivo 9, 10 generates hair-cell-like cells. Atoh1-based gene therapy to ameliorate auditory10 and vestibular11 dysfunction has been proposed. However, the biophysical properties of putative hair cells induced by Atoh1 misexpression have not been characterized. Here we show that in utero gene transfer of Atoh1 produces functional supernumerary hair cells in the mouse cochlea. The induced hair cells display stereociliary bundles, attract neuronal processes and express the ribbon synapse marker carboxy-terminal binding protein 2 (refs 12,13). Moreover, the hair cells are capable of mechanoelectrical transduction1, 2 and show basolateral conductances with age-appropriate specializations. Our results demonstrate that manipulation of cell fate by transcription factor misexpression produces functional sensory cells in the postnatal mammalian cochlea. We expect that our in utero gene transfer paradigm will enable the design and validation of gene therapies to ameliorate hearing loss in mouse models of human deafness14, 15.