美國研究人員利用3種不同康復(fù)方法,,成功幫助因脊髓損傷而癱瘓的實驗鼠重新獲得了行動能力,為下肢癱瘓人群的康復(fù)提供了新的思路,。
美國加利福尼亞大學(xué)洛杉磯分校的研究人員20日在英國《自然雜志神經(jīng)學(xué)??飞蠄蟾嬲f,他們針對癱瘓小鼠同時使用了藥物,、電刺激和常規(guī)鍛煉3種康復(fù)方法,,成功使小鼠重新走動,甚至能夠在跑步機上跑動,。
研究人員說,值得一提的是,,在康復(fù)治療過程中,,實驗鼠因脊髓完全受損而被截斷的神經(jīng)纖維并未再生。在這種情況下,,癱瘓鼠僅借助上述3種康復(fù)方法也能恢復(fù)行動能力,,這說明對于脊髓損傷的癱瘓患者來說,即便無法實現(xiàn)神經(jīng)纖維再生,,也能恢復(fù)部分的行動能力,。
研究負責(zé)人雷吉·埃杰頓介紹說,脊髓中含有重要的神經(jīng)回路,,負責(zé)產(chǎn)生驅(qū)動肢體肌肉的節(jié)奏性活動,。以前的研究都試圖直接修復(fù)患者脊髓內(nèi)的這一神經(jīng)回路,但相關(guān)研究中最后獲得的肢體行動能力恢復(fù)效果都不理想,。
此次,,他們采取的是“三管齊下”法,將癱瘓鼠置于運動狀態(tài)的傳步帶上,,然后向其注射作用于神經(jīng)遞質(zhì)血清素的藥物,,并實施低水平的電流刺激,。結(jié)果發(fā)現(xiàn),電刺激加上傳步帶傳遞給肢體的運動感,,觸發(fā)了受損脊髓內(nèi)的神經(jīng)回路,,促使實驗鼠產(chǎn)生了走步甚至跑動的動作。經(jīng)過幾個星期的這種綜合療法,,實驗鼠最終獲得部分行動能力,。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature Neuroscience 20 September 2009 | doi:10.1038/nn.2401
Transformation of nonfunctional spinal circuits into functional states after the loss of brain input
Grégoire Courtine1,2, Yury Gerasimenko3,4, Rubia van den Brand1,2, Aileen Yew5, Pavel Musienko1,2,4, Hui Zhong3, Bingbing Song6, Yan Ao6, Ronaldo M Ichiyama3, Igor Lavrov3, Roland R Roy3,6, Michael V Sofroniew5,6 & V Reggie Edgerton3,5,6
After complete spinal cord transections that removed all supraspinal inputs in adult rats, combinations of serotonergic agonists and epidural electrical stimulation were able to acutely transform spinal networks from nonfunctional to highly functional and adaptive states as early as 1 week after injury. Using kinematics, physiological and anatomical analyses, we found that these interventions could recruit specific populations of spinal circuits, refine their control via sensory input and functionally remodel these locomotor pathways when combined with training. The emergence of these new functional states enabled full weight-bearing treadmill locomotion in paralyzed rats that was almost indistinguishable from voluntary stepping. We propose that, in the absence of supraspinal input, spinal locomotion can emerge from a combination of central pattern-generating capability and the ability of these spinal circuits to use sensory afferent input to control stepping. These findings provide a strategy by which individuals with spinal cord injuries could regain substantial levels of motor control.
1 Neurology Department, University of Zurich, Zurich, Switzerland.
2 Rehabilitation Institute and Technology Center Zurich, Zurich, Switzerland.
3 Department of Physiological Science, University of California Los Angeles, Los Angeles, California, USA.
4 Motor Physiology Laboratory, Pavlov Institute of Physiology, St. Petersburg, Russia.
5 Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA.
6 Brain Research Institute, University of California Los Angeles, Los Angeles, California, USA.