近日,國(guó)際著名雜志《自然·醫(yī)學(xué)》Nature Medicine在線刊登了德國(guó)馬普研究院神經(jīng)生物學(xué)研究所和一個(gè)國(guó)際小組的最新研究成果“Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury.,。”,,研究人員合作開(kāi)發(fā)出一種研究神經(jīng)組織再生結(jié)構(gòu)的新方法,不僅能檢查完整組織中的單個(gè)神經(jīng)細(xì)胞,,還能描繪出它的三維圖像,。
脊髓接受來(lái)自皮膚、肌肉,、關(guān)節(jié)的信息,,送入大腦處理并反饋指令。脊髓神經(jīng)受傷,,會(huì)導(dǎo)致不可逆轉(zhuǎn)的癱瘓和感覺(jué)喪失,。多年來(lái),科學(xué)家一直在研究能否刺激受損的神經(jīng)軸突再生,,而有些軸突能生長(zhǎng)幾毫米,。觀察神經(jīng)細(xì)胞是否開(kāi)始生長(zhǎng),以及它們?cè)诳臻g的分布和逐級(jí)演進(jìn)是研究神經(jīng)再生的重要前提,。但目前,,只能依靠切下一部分脊髓組織制成極薄的切片,在顯微鏡下觀察二維的組織切片,,這種方法既不精確,,也非常耗時(shí),,一個(gè)觀察結(jié)果就需要許多天甚至幾周時(shí)間來(lái)處理。為此,,馬普研究院神經(jīng)生物學(xué)研究所和國(guó)際研究小組對(duì)一種超顯微技術(shù)方法進(jìn)行了改良,,讓它更加簡(jiǎn)單易行。
論文第一作者阿里·厄圖克解釋說(shuō),,脊髓組織是不透明的,,因?yàn)槠渲邪乃偷鞍踪|(zhì)折射了不同頻率的光。因此,,我們從組織切片中除去水分,,用一種折射率和蛋白質(zhì)完全相同的乳劑來(lái)代替,讓它變成了一種完全透明的組織,。“這種效果和在毛玻璃上涂蜂蜜是相同的,,當(dāng)蜂蜜涂平了表面的不規(guī)則后,毛玻璃就變得清晰透明,。”
新技術(shù)使用熒光染料給每個(gè)神經(jīng)細(xì)胞染色,,之后這些神經(jīng)纖維看起來(lái)就像是玻璃做成的,讓人們能觀察透明的脊髓,,追蹤它們的路徑,。研究人員指出,新方法讓他們一次性地就能分析出神經(jīng)細(xì)胞是否沿著傷處到脊髓開(kāi)始了重新生長(zhǎng),,這是再生醫(yī)學(xué)中的一項(xiàng)突破。
“最重要的是,,這種方法還能很容易地用于其他組織,。”馬普研究院神經(jīng)生物學(xué)研究所弗蘭克·布雷德克說(shuō),比如觀察腫瘤嵌入組織中的毛細(xì)血管或通道系統(tǒng),,可以將其繪成3維形式加以分析,。(生物谷Bioon.com)
doi:10.1038/nm.2600
PMC:
PMID:
Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury.
Richter M,Ertürk A,Jährling N,et al.
Studying regeneration in the central nervous system (CNS) is hampered by current histological and imaging techniques because they provide only partial information about axonal and glial reactions. Here we developed a tetrahydrofuran-based clearing procedure that renders fixed and unsectioned adult CNS tissue transparent and fully penetrable for optical imaging. In large spinal cord segments, we imaged fluorescently labeled cells by 'ultramicroscopy' and two-photon microscopy without the need for histological sectioning. We found that more than a year after injury growth-competent axons regenerated abundantly through the injury site. A few growth-incompetent axons could also regenerate when they bypassed the lesion. Moreover, we accurately determined quantitative changes of glial cells after spinal cord injury. Thus, clearing CNS tissue enables an unambiguous evaluation of axon regeneration and glial reactions. Our clearing procedure also renders other organs transparent, which makes this approach useful for a large number of preclinical paradigms.