2013年6月25日 訊 /生物谷BIOON/ --近日,,刊登在國際著名雜志Neuron上的一篇研究報(bào)告中,來自馬克斯普朗克學(xué)會(huì)的研究者通過研究發(fā)現(xiàn)了一種新型的重要分子機(jī)制,,其可以使得神經(jīng)元變成大腦信號(hào)調(diào)節(jié)適應(yīng)真正的主導(dǎo)者,。
神經(jīng)元的溝通是通過細(xì)胞間的突觸接觸來實(shí)現(xiàn)的,首先發(fā)射神經(jīng)元必須處于刺激狀態(tài),,其可以產(chǎn)生名為神經(jīng)遞質(zhì)的化學(xué)信使,,這些信號(hào)分子隨后可以達(dá)到受體細(xì)胞,并且影響其激活狀態(tài),,這種信號(hào)傳遞過程高度復(fù)雜而且高度受控,,行使功能的主角就是突觸小泡,,其是一種圍繞在細(xì)胞膜周圍的小水泡結(jié)構(gòu)。
研究者Brose表示,,一個(gè)突觸上快速釋放的小泡數(shù)量決定了其傳遞信息的可靠安全性,;突觸的適應(yīng)性可以再所有的神經(jīng)元中觀察到,對(duì)于進(jìn)行大量重要的大腦過程來說其短期的可塑性必不可少,,如果沒有這種可塑性,,我們就不能集中聲音,使用心算將不可能,。
研究者Noa Lipstein說道,,我們?cè)缙趯?duì)培養(yǎng)皿中的單一神經(jīng)元進(jìn)行研究,結(jié)果顯示,,鈣-鈣調(diào)蛋白復(fù)合物可以激活Munc13以及使得突觸小囊泡快速充滿突觸結(jié)構(gòu)行駛功能,。本文研究中我們發(fā)現(xiàn)完整的神經(jīng)元網(wǎng)絡(luò)中突觸的可持續(xù)效力可通過鈣-鈣調(diào)蛋白復(fù)合物,對(duì)Munc13的激活進(jìn)行依賴,。
在這項(xiàng)研究中研究者最終闡述了一種神經(jīng)元短期可塑性的重要機(jī)制,其對(duì)于大腦乃至培養(yǎng)中的神經(jīng)元來說非常重要,,未來Munc13分子或許可以作為一種影響大腦功能的新型藥物靶點(diǎn)來幫助科學(xué)家進(jìn)行新藥的開發(fā),。(生物谷Bioon.com)
doi:10.1016/j.neuron.2013.05.011
PMC:
PMID:
Dynamic Control of Synaptic Vesicle Replenishment and Short-Term Plasticity by Ca2+-Calmodulin-Munc13-1 Signaling
Noa Lipstein, Takeshi Sakaba, Benjamin H. Cooper, Kun-Han Lin, Nicola Strenzke, Uri Ashery, Jeong-Seop Rhee, Holger Taschenberger, Erwin Neher, Nils Brose
Short-term synaptic plasticity, the dynamic alteration of synaptic strength during high-frequency activity, is a fundamental characteristic of all synapses. At the calyx of Held, repetitive activity eventually results in short-term synaptic depression, which is in part due to the gradual exhaustion of releasable synaptic vesicles. This is counterbalanced by Ca2+-dependent vesicle replenishment, but the molecular mechanisms of this replenishment are largely unknown. We studied calyces of Held in knockin mice that express a Ca2+-Calmodulin insensitive Munc13-1W464R variant of the synaptic vesicle priming protein Munc13-1. Calyces of these mice exhibit a slower rate of synaptic vesicle replenishment, aberrant short-term depression and reduced recovery from synaptic depression after high-frequency stimulation. Our data establish Munc13-1 as a major presynaptic target of Ca2+-Calmodulin signaling and show that the Ca2+-Calmodulin-Munc13-1 complex is a pivotal component of the molecular machinery that determines short-term synaptic plasticity characteristics.