細胞毒性T細胞和自然殺傷細胞互補性作用的示意圖,圖片來自維基共享資源。
來自西班牙Bellvitge生物醫(yī)學研究所(Bellvitge Biomedical Research Institute)的研究人員首次研究人自然殺傷細胞(natural killer cell, NK)抗豬軟骨細胞的反應,。研究結果于2012年1月27日發(fā)表在Journal of Immunology期刊上,表明作為天然免疫系統(tǒng)特征之一的自然殺傷細胞在排斥豬軟骨細胞異種移植(xenotransplantation)中發(fā)揮著重要的作用。
自然殺傷細胞
自然殺傷細胞連同嗜中性白細胞和巨噬細胞,是細胞第一道防御體系的一部分,。自然殺傷細胞參與非獲得性免疫反應,,即天然免疫反應,。它們負責鑒定特異性的細胞類型(腫瘤、感染或者外來物)并利用細胞毒性將之摧毀,。
這項研究的通訊作者Cristina Costa說,,自然殺傷細胞數(shù)量雖少,但是它們在移植領域中的重要性越來越大,,“我們觀察到天然免疫在調節(jié)獲得性免疫中發(fā)揮著重要的作用,,而獲得性免疫在身體排斥移植器官中起著比較關鍵的作用。”
異種移植
Costa領導的研究小組正在實現(xiàn)將豬軟骨細胞移植到人身上以便修復軟骨損傷,。研究小組研究了在豬細胞存在下人自然殺傷細胞“在體外”產(chǎn)生的反應,。他們注意到在移植條件下和在高水平抗體和細胞因子存在時,人自然殺傷細胞產(chǎn)生細胞毒性反應,然后裂解(摧毀)外源細胞,,在這項研究中,,外源細胞指的是豬軟骨細胞。
研究人員解釋道,,“在這項研究中,,我們闡明了幾種分子參與自然殺傷細胞的附著過程和細胞毒性。”他們相信這項研究為科學家繼續(xù)深入研究指明方向,,“[在進行移植時],,一方面我們不得不阻止抗體儲存,因為抗體是增加細胞毒性的一個關鍵性因子,,另一方面我們必須努力通過修復相關的分子來降低細胞附著,。”
就Costa提出的軟骨異種移植的臨床應用而言,下一步實驗將是“對豬軟骨細胞進行基因修飾”,,這樣人自然殺傷細胞就不能將它們識別為外來者,,因而避免產(chǎn)生移植排斥。
軟骨移植
人之間的軟骨移植在診所并未得到廣泛地應用,,但是科學家已經(jīng)成功地讓遭受創(chuàng)傷性損傷的組織再生,。自體移植(autologous transplant)是用來自同一個人的細胞進行的,而異基因移植(allogenic transplant)是用來自另一個人的細胞開展的,。
Costa說,,“在這兩種情形中,人們遇到的限制就是可獲得的細胞數(shù)量,。如果我們能夠進行軟骨異種移植,,它將需要增加可獲得的用于移植的細胞數(shù)量和質量。”在未來,,“我們可能能夠將豬軟骨細胞異種移植到骨關節(jié)炎患者或者甚至是類風濕性關節(jié)炎患者身上”,,但是“在這些情形中,其他的發(fā)炎和免疫過程也可能會影響移植的最終結果,。”(生物谷:towersimper編譯)
doi:10.4049/jimmunol.1100433
PMC:
PMID:
Multiple Receptors Trigger Human NK Cell-Mediated Cytotoxicity against Porcine Chondrocytes
Roberta Sommaggio, André Cohnen, Carsten Watzl and Cristina Costa
Xenotransplantation of genetically engineered porcine chondrocytes may provide a therapeutic solution for the repair of cartilage defects of various types. However, the mechanisms underlying the humoral and cellular responses that lead to rejection of xenogeneic cartilage are not well understood. In this study, we investigated the interaction between human NK cells and isolated porcine costal chondrocytes (PCC). Our data show that freshly isolated NK cells adhere weakly to PCC. Consequently, PCC were highly resistant to cytolysis mediated by freshly isolated NK cells. However, the presence of human natural Abs in the coculture was often sufficient to trigger cytotoxicity against PCC. Furthermore, IL-2 stimulation of NK cells or activation of PCC with the proinflammatory cytokines TNF-α or IL-1α resulted in increased adhesion, which was paralleled by increased NK cell-mediated lysis of PCC. NK cell adhesion to PCC could be blocked by Abs against human LFA-1 and porcine VCAM-1. NKG2D and NKp44 were involved in triggering cytotoxicity against PCC, which expressed ligands for these activating NK cell receptors. Our data further suggest that NKp30 and NKp46 may contribute to the activation of NK cells by PCC under certain conditions. Finally, comparative studies confirmed that PCC are more resistant than porcine aortic endothelial cells to human NK cell-mediated lysis. Thus, the data demonstrate that human NK cells can kill pig chondrocytes and may therefore contribute to rejection of xenogeneic cartilage. In addition, we identify potential targets for intervention to prevent the NK cell response against pig xenografts.