今年2月,一份發(fā)表于PNAS上的研究報告引起了社會廣泛關注,,研究人員從危地馬拉3只果蝠體內(nèi)檢測出一種新型甲型流感病毒,,從分類上看,該流感病毒完全不同于以往存在的流感病毒,,屬于一個新的亞型,,研究人員把它定為H17N10亞型。大家關心的問題是這種新型流感病毒會不會感染人,,會不會在人群中傳播并引發(fā)流感的暴發(fā),?種種疑慮和不安一時間籠罩在公眾心頭。高福課題組長期以來致力于流感病毒囊膜蛋白結(jié)構與病毒跨種間傳播機制的研究,。在第一時間內(nèi)表達和純化了該新型流感病毒神經(jīng)氨酸酶(NA),,對其結(jié)構和功能進行了詳細的研究。
流感病毒神經(jīng)氨酸酶(NA)是流感病毒表面最重要的糖蛋白之一,,流感病毒通過血凝素蛋白(HA)與宿主細胞表面受體唾液酸結(jié)合侵入宿主細胞,,然而,在病毒粒子釋放時,,HA與唾液酸的結(jié)合又成了病毒釋放和遷移的障礙,。NA在病毒侵染末期通過催化細胞表面糖蛋白分子上唾液酸從糖鏈上解離促進新生病毒顆粒的釋放,幫助病毒粒子遷移,,所以NA的活性與病毒的感染,、傳播與致病密切相關。
之前已發(fā)現(xiàn)的流感病毒NA有9個血清型(N1-N9),新發(fā)現(xiàn)的流感病毒NA屬于第十個血清型(N10),。課題組研究人員利用昆蟲細胞表達純化的N10,,檢測了可溶性N10蛋白的神經(jīng)氨酸酶活性,出乎預料的發(fā)現(xiàn)是N10沒有傳統(tǒng)NA所具有的神經(jīng)氨酸酶活性,,也就是說它不具備切割唾液酸的功能,。從結(jié)構上看,N10與傳統(tǒng)的NA相似,,4個單體形成一個四聚體結(jié)構,,在每個分子的表面都有一個類似于酶催化中心的區(qū)域。但是,,進一步分析發(fā)現(xiàn)相比較其它NA,N10酶活性中心與酶活性相關的保守氨基酸有很多改變,,致使酶活性中心構象發(fā)生了巨大變化,,不利于底物唾液酸的結(jié)合。
這些發(fā)現(xiàn)暗示,,新型蝙蝠流感病毒可能與以往的流感病毒有不同的侵染和釋放機制,,具有較嚴格的宿主特異性,在短時間內(nèi)不會造成人際間傳播,。這為流感防控政策的制定提供了理論依據(jù),,同時,也為流感病毒的溯源,、進化研究提供了新的思路,。該項研究成果近期發(fā)表在PNAS雜志上。(生物谷Bioon.com)
doi: 10.1073/pnas.1211037109
PMC:
PMID:
Structural and functional characterization of neuraminidase-like molecule N10 derived from bat influenza A virus
Li Q, Sun X, Li Z, Liu Y, Vavricka CJ, Qi J, Gao GF.
The recent discovery of the unique genome of influenza virus H17N10 in bats raises considerable doubt about the origin and evolution of influenza A viruses. It also identifies a neuraminidase (NA)-like protein, N10, that is highly divergent from the nine other well-established serotypes of influenza A NA (N1-N9). The structural elucidation and functional characterization of influenza NAs have illustrated the complexity of NA structures, thus raising a key question as to whether N10 has a special structure and function. Here the crystal structure of N10, derived from influenza virus A/little yellow-shouldered bat/Guatemala/153/2009 (H17N10), was solved at a resolution of 2.20 ?. Overall, the structure of N10 was found to be similar to that of the other known influenza NA structures. In vitro enzymatic assays demonstrated that N10 lacks canonical NA activity. A detailed structural analysis revealed dramatic alterations of the conserved active site residues that are unfavorable for the binding and cleavage of terminally linked sialic acid receptors. Furthermore, an unusual 150-loop (residues 147-152) was observed to participate in the intermolecular polar interactions between adjacent N10 molecules of the N10 tetramer. Our study of influenza N10 provides insight into the structure and function of the sialidase superfamily and sheds light on the molecular mechanism of bat influenza virus infection.