1月3日,,國(guó)際著名雜志Plos One在線刊登了一篇文章“細(xì)菌基因組調(diào)節(jié)子的染色體排布”( Genomic Arrangement of Regulons in Bacterial Genomes),文章的通訊作者是來自吉林大學(xué)計(jì)算機(jī)學(xué)院的客座教授徐鷹,,在文章中,,作者用計(jì)算機(jī)技術(shù)來闡述了細(xì)菌調(diào)節(jié)子的排布規(guī)則,。
調(diào)節(jié)子是細(xì)菌細(xì)胞基本的效應(yīng)系統(tǒng)調(diào)節(jié)子,在研究細(xì)菌的領(lǐng)域內(nèi),,調(diào)節(jié)子是一個(gè)最基本的概念,,細(xì)菌的調(diào)節(jié)子是一組操縱子,,是通過相同的調(diào)節(jié)網(wǎng)絡(luò)來進(jìn)行的轉(zhuǎn)錄共調(diào)節(jié),調(diào)節(jié)子主要包括trans調(diào)節(jié)器(一般的轉(zhuǎn)錄調(diào)控因子)和位于操縱子啟動(dòng)子前的cis調(diào)節(jié)結(jié)合原件,;一個(gè)調(diào)節(jié)子包含了由一種轉(zhuǎn)錄因子調(diào)節(jié)的很多操縱子,。
1964年,科學(xué)家提出了regulon(調(diào)節(jié)子)這個(gè)概念,,隨后研究者們?cè)诖竽c桿菌中K12發(fā)現(xiàn)了173種調(diào)節(jié)子,,在枯草芽孢桿菌中發(fā)現(xiàn)了更多的調(diào)節(jié)子;通俗來講,,調(diào)節(jié)子被分為兩種類型:局部調(diào)節(jié)子和全局調(diào)節(jié)子,,前者指的是調(diào)節(jié)子含有為數(shù)不多的操縱子成分,而后者指的是含有相對(duì)多的操縱子成分,,盡管我們已經(jīng)學(xué)到了已知的調(diào)節(jié)子的部分功能性,,可是對(duì)于調(diào)節(jié)子是如何在細(xì)菌基因組中發(fā)揮作用的卻知之甚少。
文章的作者徐鷹教授是國(guó)際著名計(jì)算生物學(xué)家,,美國(guó)佐治亞大學(xué)生物化學(xué)與分子生物學(xué)系教授,,生物信息學(xué)研究所所長(zhǎng),兼職吉林大學(xué)客座教授,,在這篇文章中,,作者首次用計(jì)算機(jī)科學(xué)來闡釋細(xì)菌基因組中調(diào)節(jié)子的組織架構(gòu)法則,,他們選用的是大腸桿菌K12和枯草芽孢桿菌str.168來進(jìn)行研究,,最終作者的結(jié)果表明,每一個(gè)調(diào)節(jié)子中的操縱子趨向于形成一段繞著染色體緊密在一起的基因簇,,轉(zhuǎn)錄因子比轉(zhuǎn)錄靶點(diǎn)在進(jìn)化上更有嚴(yán)格的規(guī)定,,基因組中所有調(diào)節(jié)子的操縱子組分的全局排布趨向于使功能得到最大發(fā)揮。(生物谷Bioon.com)
(T.Shen編譯 如有問題請(qǐng)及時(shí)指正)
doi:10.1371/journal.pone.0029496
PMC:
PMID:
Genomic Arrangement of Regulons in Bacterial Genomes
Han Zhang1,2#, Yanbin Yin1,3#, Victor Olman1, Ying Xu1,3,4*
Regulons, as groups of transcriptionally co-regulated operons, are the basic units of cellular response systems in bacterial cells. While the concept has been long and widely used in bacterial studies since it was first proposed in 1964, very little is known about how its component operons are arranged in a bacterial genome. We present a computational study to elucidate of the organizational principles of regulons in a bacterial genome, based on the experimentally validated regulons of E. coli and B. subtilis. Our results indicate that (1) genomic locations of transcriptional factors (TFs) are under stronger evolutionary constraints than those of the operons they regulate so changing a TF's genomic location will have larger impact to the bacterium than changing the genomic position of any of its target operons; (2) operons of regulons are generally not uniformly distributed in the genome but tend to form a few closely located clusters, which generally consist of genes working in the same metabolic pathways; and (3) the global arrangement of the component operons of all the regulons in a genome tends to minimize a simple scoring function, indicating that the global arrangement of regulons follows simple organizational principles.