最近來自國外的一項(xiàng)研究發(fā)現(xiàn),,細(xì)菌可以利用一種未知的方式來抵制抗生素對(duì)其的傷害,,研究者們發(fā)現(xiàn)這種細(xì)菌可以修飾自身的管家酶(housekeeping enzyme),,進(jìn)而使得自己的管家酶識(shí)別作用的抗生素,并且使得抗生素“繳械投降”,。這項(xiàng)研究刊登在了新一期的國際著名雜志PNAS上,。
不同的細(xì)菌之間通常進(jìn)行的是化學(xué)戰(zhàn)斗(信號(hào)分子互相影響),用于藥品中的很多抗生素都是細(xì)菌保護(hù)自己的武器,,但是細(xì)菌通常會(huì)保護(hù)自身不受自身毒素的傷害,,這種自身保護(hù)防御的能力往往會(huì)被別的種所學(xué)習(xí)而獲得,,慢慢地,就產(chǎn)生了細(xì)菌的耐藥性,。研究者們將注意力集中到一種稱為MccF的酶上,,這種酶可以使得特洛伊木馬抗生素("Trojan horse" antibiotic)失活,這種抗生素可以滲入到細(xì)胞中,,以一頓豐盛的蛋白晚餐的形式隱藏起來,。而細(xì)菌中一種被稱為C7(McC7)的抗生素和一系列用于治療皮膚感染的抗生素類似。研究者Satish Nair表示,,一般情況下,,特洛伊木馬抗生素部分會(huì)和某些無害的物質(zhì)進(jìn)行耦合,以此形成一種肽,,因此當(dāng)敏感的細(xì)菌看到這種肽的時(shí)候,,便以為是美味的食物,將其吞下去,;細(xì)菌享用這頓美味的代價(jià)是相當(dāng)高的,,有可能使其送命,一旦細(xì)菌體內(nèi)的酶將抗生素暴露出來之后,,抗生素便會(huì)自由地攻擊細(xì)菌體內(nèi)蛋白質(zhì)合成的任何一個(gè)關(guān)鍵組分,,從而引起細(xì)菌死亡。
這就是為什么細(xì)菌要改變自身的基因,,進(jìn)而改變基因所編碼的酶來抵御抗生素對(duì)細(xì)菌的傷害,,以前的研究中,研究者發(fā)現(xiàn)了保護(hù)細(xì)菌免受抗生素傷害的一些基因,,但是具體機(jī)理并不清楚,,這些基因所編碼產(chǎn)生的肽酶可以正常的消化多肽,但是同時(shí)也缺乏是被任何多肽的能力,。Nair指出,,以前的研究中,,我么么并不清楚多肽酶是如何來破壞抗生素的,,為了進(jìn)一步研究肽酶的結(jié)構(gòu),研究者將MccF酶結(jié)晶出來,,MccF可以和抗生素進(jìn)行結(jié)合,,通過分子結(jié)構(gòu)以及與抗生素結(jié)合反應(yīng)的分析,研究者表示MccF和其家族的酶類有些類似,,但是MccF攜帶了一個(gè)氨基酸附加環(huán),,便于識(shí)別抗生素,阻礙抗生素發(fā)揮作用,,進(jìn)而使其失活,。
研究者Nair表示,,MccF環(huán)上特殊的氨基酸殘基在識(shí)別抗生素并且降解抗生素方面發(fā)揮著主要的作用,因此,,我們就可以掃描致病細(xì)菌的所有基因組,,然后尋找到那些攜帶有抗性環(huán)(antibiotic-resistance loop)的基因,這樣一來,,我們知道了哪種疾病是因?yàn)槟姆N細(xì)菌感染而引起的,,我們就可以準(zhǔn)確地進(jìn)行用藥,而不是盲目用藥以至于細(xì)菌產(chǎn)生耐藥性,。(生物谷:T.Shen編譯)
doi:10.1073/pnas.1114224109
PMC:
PMID:
Structure and function of a serine carboxypeptidase adapted for degradation of the protein synthesis antibiotic microcin C7
Vinayak Agarwala,b, Anton Tikhonovc,d, Anastasia Metlitskayac, Konstantin Severinovc,d,e, and Satish K. Naira
Several classes of naturally occurring antimicrobials exert their antibiotic activity by specifically targeting aminoacyl-tRNA synthetases, validating these enzymes as drug targets. The aspartyl tRNA synthetase “Trojan horse” inhibitor microcin C7 (McC7) consists of a nonhydrolyzable aspartyl-adenylate conjugated to a hexapeptide carrier that facilitates active import into bacterial cells through an oligopeptide transport system. Subsequent proteolytic processing releases the toxic compound inside the cell. Producing strains of McC7 must protect themselves against autotoxicity that may result from premature processing. The mccF gene confers resistance against endogenous and exogenous McC7 by hydrolyzing the amide bond that connects the peptide and nucleotide moieties of McC7. We present here crystal structures of MccF, in complex with various ligands. The MccF structure is similar to that of dipeptide LD-carboxypeptidase, but with an additional loop proximal to the active site that serves as the primary determinant for recognition of adenylated substrates. Wild-type MccF only hydrolyzes the naturally occurring aspartyl phosphoramidate McC7 and synthetic peptidyl sulfamoyl adenylates that contain anionic side chains. We show that substitutions of two active site MccF residues result in a specificity switch toward aromatic aminoacyl–adenylate substrates. These results suggest how MccF-like enzymes may be used to avert various toxic aminoacyl–adenylates that accumulate during antibiotic biosynthesis or in normal metabolism of the cell.