Copyright ©版權(quán)歸生物谷所有,,若未得到Bioon授權(quán),,請(qǐng)勿轉(zhuǎn)載,。
近日,,中佛羅里達(dá)大學(xué)的研究者發(fā)明了一種新技術(shù),,這種新技術(shù)可以幫助醫(yī)生快速準(zhǔn)確地檢測出包括克羅恩疾病在內(nèi)的炎性腸病相關(guān)的病原菌。這種基于納米顆粒的新技術(shù)也可以幫助科學(xué)家檢測隱藏在人類組織深處的微生物,。微生物可以引起嚴(yán)重的健康問題,,當(dāng)前我們所擁有的檢測微生物的技術(shù)花費(fèi)時(shí)間較長,而且時(shí)間過長容易耽誤病人有效的治療,。而研究者在文章中所闡述的這項(xiàng)新技術(shù)中,,他們運(yùn)用涂有特殊DNA標(biāo)記物的納米顆粒來對(duì)掩藏的微生物進(jìn)行檢測,這種新技術(shù)的檢測效率和準(zhǔn)確率比較高,,優(yōu)于以往的檢測方法,,成為醫(yī)生進(jìn)行檢測的好幫手。
研究者Naser表示,,他們的檢測方法超越了傳統(tǒng)的分子生化檢測方法,,而且基于納米技術(shù),方便準(zhǔn)確,,而且可靠,。相關(guān)的研究成果刊登在了近日的國際著名雜志PLoS One上。研究者發(fā)明了雜交磁性松弛納米傳感技術(shù)(hMRS),,可以對(duì)隱藏在個(gè)體細(xì)胞中的病原菌微量DNA進(jìn)行靈敏檢測,,hMRS包含涂有氧化鐵的聚合體,而且可以進(jìn)行特異性的化學(xué)修飾,,來結(jié)合在DNA標(biāo)記物傷,,用以檢測病原菌。當(dāng)hMRS結(jié)合了病原菌的DNA,,磁性共振信號(hào)便會(huì)檢測到,,信號(hào)將被放大,然后研究者將會(huì)在電腦上讀取磁性信號(hào)的改變,,最終決定樣品是否被病原菌感染了,。
研究者Perez說,,這項(xiàng)技術(shù)將會(huì)為醫(yī)療衛(wèi)生工作者提供更好的可操作性技術(shù),以更快的檢測出病原菌的存在,。就在去年,,Perez教授和他的研究團(tuán)隊(duì)意外地發(fā)現(xiàn)磁性納米傳感器的DNA結(jié)合特異性,如今他們在取得了極大的進(jìn)步,,這項(xiàng)新的檢測微生物的技術(shù)將更好地為臨床檢測上提供強(qiáng)大的技術(shù)支持,。(生物谷:T.Shen編譯)
Copyright ©版權(quán)歸生物谷所有,若未得到Bioon授權(quán),,請(qǐng)勿轉(zhuǎn)載,。
doi:10.1371/journal.pone.0035326
PMC:
PMID:
Rapid and Sensitive Detection of an Intracellular Pathogen in Human Peripheral Leukocytes with Hybridizing Magnetic Relaxation Nanosensors
Charalambos Kaittanis1, Hamza Boukhriss1, Santimukul Santra1, Saleh A. Naser2, J. Manuel Perez1,2,3*
Bacterial infections are still a major global healthcare problem. The quick and sensitive detection of pathogens responsible for these infections would facilitate correct diagnosis of the disease and expedite treatment. Of major importance are intracellular slow-growing pathogens that reside within peripheral leukocytes, evading recognition by the immune system and detection by traditional culture methods. Herein, we report the use of hybridizing magnetic nanosensors (hMRS) for the detection of an intracellular pathogen, Mycobacterium avium spp. paratuberculosis (MAP). The hMRS are designed to bind to a unique genomic sequence found in the MAP genome, causing significant changes in the sample’s magnetic resonance signal. Clinically relevant samples, including tissue and blood, were screened with hMRS and results were compared with traditional PCR analysis. Within less than an hour, the hMRS identified MAP-positive samples in a library of laboratory cultures, clinical isolates, blood and homogenized tissues. Comparison of the hMRS with culture methods in terms of prediction of disease state revealed that the hMRS outperformed established culture methods, while being significantly faster (1 hour vs 12 weeks). Additionally, using a single instrument and one nanoparticle preparation we were able to detect the intracellular bacterial target in clinical samples at the genomic and epitope levels. Overall, since the nanoparticles are robust in diverse environmental settings and substantially more affordable than PCR enzymes, the potential clinical and field-based use of hMRS in the multiplexed identification of microbial pathogens and other disease-related biomarkers via a single, deployable instrument in clinical and complex environmental samples is foreseen.