(封面圖片:描繪了細(xì)胞膜(灰色小球)、鈣離子通道(綠色結(jié)構(gòu))以及鈣離子(黃色小球)間的相互作用,。鈣離子通道通過(guò)與鈣調(diào)蛋白(紅色分子)結(jié)合來(lái)實(shí)現(xiàn)鈣離子信號(hào)的選擇性控制,。)
生物谷報(bào)道:鈣離子通道是一種跨越細(xì)胞膜的結(jié)構(gòu),,它嚴(yán)格控制著鈣離子進(jìn)入細(xì)胞的過(guò)程。由于鈣離子信號(hào)與很多重要生理功能相關(guān),,例如心臟收縮,、基因轉(zhuǎn)錄等,因此調(diào)節(jié)鈣離子進(jìn)入細(xì)胞的精確反饋機(jī)制就至關(guān)重要,。為了實(shí)現(xiàn)這一功能,,每個(gè)鈣離子通道都與一個(gè)鈣調(diào)蛋白分子(calmodulin CaM)結(jié)合,從而通過(guò)鈣離子與其羧基端小葉(C-lobe)和氨基端小葉(N-lobe)的結(jié)合實(shí)現(xiàn)對(duì)通道活性的調(diào)節(jié),。
鈣調(diào)蛋白與鈣離子形成的復(fù)合物是構(gòu)成鈣離子感受器的重要原型,,鈣離子感受器與鈣離子源密切相關(guān)。CaM的羧基端小葉能感應(yīng)局域的鈣離子大幅振蕩,,這是由于主通道的鈣離子流引起的,。而氨基端小葉則感應(yīng)全局的較遠(yuǎn)距離源引起的鈣離子小型改變。然而,,盡管以上現(xiàn)象在生物學(xué)上非常重要,,但其內(nèi)部機(jī)制尚不清楚。
在2008年6月27日出版的《細(xì)胞》(Cell)上,,來(lái)自美國(guó)的一組科學(xué)家發(fā)表文章稱,,他們提出了一種全新理論來(lái)說(shuō)明全局選擇性是如何出現(xiàn)的,并且從實(shí)驗(yàn)上證實(shí)了這一理論的正確性,。在研究中,,科學(xué)家利用一種新方法實(shí)現(xiàn)了對(duì)于鈣離子振蕩的毫秒級(jí)別控制。結(jié)果發(fā)現(xiàn),全局選擇性產(chǎn)生于CaM結(jié)合于通道之后的快速鈣離子釋放,。
盡管CaM的C-lobe和N-lobe感受著完全相同的鈣離子信號(hào),,它們卻選擇性的與產(chǎn)生于不同空間區(qū)域的鈣離子信號(hào)發(fā)生反應(yīng)。研究人員發(fā)現(xiàn),,CaM的C-lobe利用一種“慢CaM”(slow CaM)機(jī)制來(lái)選擇產(chǎn)生于自身通道的鈣離子信號(hào),,這類(lèi)似于放大鏡,而N-lobe則利用一種“SQS”機(jī)制來(lái)選擇來(lái)自較遠(yuǎn)距離通道的信號(hào),,這類(lèi)似于雙筒望遠(yuǎn)鏡,。特別值得注意的是,SQS機(jī)制產(chǎn)生的空間選擇性能得到調(diào)整,,這或許能產(chǎn)生非常重要的生理學(xué)結(jié)果,。
新發(fā)現(xiàn)對(duì)于更好了解鈣離子信號(hào)在整個(gè)生物學(xué)領(lǐng)域的作用非常有意義。(生物谷www.bioon.com)
生物谷推薦原始出處:
Cell,,Vol 133, 1228-1240, 27 June 2008,,Michael R. Tadross, Ivy E. Dick, and David T. Yue
Mechanism of Local and Global Ca2+ Sensing by Calmodulin in Complex with a Ca2+ Channel
Michael R. Tadross,1 Ivy E. Dick,1 and David T. Yue1,
1 Calcium Signals Laboratory, Departments of Biomedical Engineering and Neuroscience, The Johns Hopkins University School of Medicine, Ross Building, Room 713, 720 Rutland Avenue, Baltimore, MD 21205, USA
Summary
Calmodulin (CaM) in complex with Ca2+ channels constitutes a prototype for Ca2+ sensors that are intimately colocalized with Ca2+ sources. The C-lobe of CaM senses local, large Ca2+ oscillations due to Ca2+ influx from the host channel, and the N-lobe senses global, albeit diminutive Ca2+ changes arising from distant sources. Though biologically essential, the mechanism underlying global Ca2+ sensing has remained unknown. Here, we advance a theory of how global selectivity arises, and we experimentally validate this proposal with methodologies enabling millisecond control of Ca2+ oscillations seen by the CaM/channel complex. We find that global selectivity arises from rapid Ca2+ release from CaM combined with greater affinity of the channel for Ca2+-free versus Ca2+-bound CaM. The emergence of complex decoding properties from the juxtaposition of common elements, and the techniques developed herein, promise generalization to numerous molecules residing near Ca2+ sources.