美國威斯康辛大學教授詹姆斯·湯姆森的科研小組日前成功地在試管內(nèi)利用萬能細胞再現(xiàn)了疾病過程,。該小組用重癥神經(jīng)疾病患者的皮膚細胞培養(yǎng)出人工多功能干細胞(iPS細胞),,將這些iPS細胞培育為神經(jīng)細胞后,在試管內(nèi)成功再現(xiàn)了神經(jīng)細胞因疾病死亡的過程,。
這是世界首例使用患者iPS細胞重現(xiàn)病癥的成功嘗試,。科研小組在英國科學雜志《自然》上發(fā)表了該成果,,預計今后可廣泛應(yīng)用于探明病因,、研發(fā)新藥等領(lǐng)域。
科研小組表示“隨著時間推移成功觀測到了神經(jīng)細胞出現(xiàn)的異常變化,。在患者體內(nèi)難以觀測的病變可以在試管內(nèi)清晰再現(xiàn)了”,。
日本iPS細胞專家、國立成育醫(yī)療中心研究所室長阿久津英憲表示,,該成果對iPS細胞在治療疾病,、藥物研發(fā)領(lǐng)域中的現(xiàn)實應(yīng)用邁進了一大步,。曾有專家擔心“重現(xiàn)病癥會很難”,而該成果體現(xiàn)了研究的飛速發(fā)展,。用iPS細胞可無限度繁殖病變細胞用于研究,,此意義實屬非凡。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature advance online publication 21 December 2008 | doi:10.1038/nature07677
Induced pluripotent stem cells from a spinal muscular atrophy patient
Allison D. Ebert1,2, Junying Yu3, Ferrill F. Rose, Jr4, Virginia B. Mattis4, Christian L. Lorson4, James A. Thomson2,3,5 & Clive N. Svendsen1,2,5,6
1 The Waisman Center, and,
2 The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
3 The Genome Center and Wisconsin National Primate Research Center, University of Wisconsin-Madison, 425 Henry Mall, Madison, Wisconsin 53706, USA
4 Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, 1201 Rollins Road, Columbia, Missouri 65211, USA
5 Department of Anatomy, University of Wisconsin-Madison, 1300 University Avenue Madison, Wisconsin 53706, USA
6 Department of Neurology, University of Wisconsin-Madison, 600 North Highland Avenue, Madison, Wisconsin 53792, USA
Spinal muscular atrophy is one of the most common inherited forms of neurological disease leading to infant mortality. Patients have selective loss of lower motor neurons resulting in muscle weakness, paralysis and often death. Although patient fibroblasts have been used extensively to study spinal muscular atrophy, motor neurons have a unique anatomy and physiology which may underlie their vulnerability to the disease process. Here we report the generation of induced pluripotent stem cells from skin fibroblast samples taken from a child with spinal muscular atrophy. These cells expanded robustly in culture, maintained the disease genotype and generated motor neurons that showed selective deficits compared to those derived from the child's unaffected mother. This is the first study to show that human induced pluripotent stem cells can be used to model the specific pathology seen in a genetically inherited disease. As such, it represents a promising resource to study disease mechanisms, screen new drug compounds and develop new therapies.