美國麻省理工學(xué)院科學(xué)家開發(fā)了一種高效的新方法來配對細(xì)胞,使其融合在一起成為雜交細(xì)胞,。這一新技術(shù)能讓科學(xué)家更容易地研究細(xì)胞結(jié)合時發(fā)生的情況,,比如融合成熟細(xì)胞和胚胎干細(xì)胞以研究其中發(fā)生的遺傳重新編程。相關(guān)論文1月4日在線發(fā)表于《自然—方法學(xué)》(Nature Methods),。
這一簡便而精巧的分揀手段,,將細(xì)胞融合的成功率從10%提高到大約50%,而且允許數(shù)千個細(xì)胞配對一起進(jìn)行,。
麻省理工學(xué)院副教授Joel Voldman表示,,盡管細(xì)胞融合技術(shù)出現(xiàn)已經(jīng)有較長的時間,但是存在很多技術(shù)限制,。在融合細(xì)胞之前進(jìn)行正確的細(xì)胞配對,,是一個主要的困難。如果研究人員的工作與兩種細(xì)胞類型有關(guān),,比如A和B,,那么最后除了需要的AB配對,還會得到很多AA和BB這樣的配對,。
先前的方法是在細(xì)胞通過一個芯片時,,把細(xì)胞捕獲在一個微型杯中。每個杯子只能容納2個細(xì)胞,,但是并沒有辦法控制這兩個細(xì)胞到底是A和B,、A和A、還是B和B,。
相比之下,,研究小組開發(fā)的新分揀裝置能夠保證捕獲并配對不同種類的細(xì)胞。首先,,A類型細(xì)胞從一個方向通過芯片,,并被捕獲在一個只能容納一個細(xì)胞的容器中。一旦這個細(xì)胞被捕獲,,液體就會開始從反方向流過芯片,,將這個細(xì)胞從只能容納一個細(xì)胞的小杯中推出,進(jìn)入對面一個大一些的杯子里,。
一旦每個大杯中都有了一個A型細(xì)胞,,B型細(xì)胞就流入大杯。由于每個杯子只能容納2個細(xì)胞,,最后杯中就是1個A型細(xì)胞和1個B型細(xì)胞,。當(dāng)細(xì)胞在杯中配對后,就可以通過電脈沖融合細(xì)胞膜從而讓這2個細(xì)胞結(jié)合在一起。
除了有助于干細(xì)胞重新編程研究外,,這一技術(shù)還可用來研究任意種類細(xì)胞之間的交互作用,。Voldman表示:“這是個通用的裝置。”(生物谷Bioon.com)
生物谷推薦原始出處:
Nature Methods 4 January 2009 | doi:10.1038/nmeth.1290
Microfluidic control of cell pairing and fusion
Alison M Skelley1,2,6, Oktay Kirak3,6, Heikyung Suh3, Rudolf Jaenisch3,4 & Joel Voldman1,2,5
Cell fusion has been used for many different purposes, including generation of hybridomas and reprogramming of somatic cells. The fusion step is the key event in initiation of these procedures. Standard fusion techniques, however, provide poor and random cell contact, leading to low yields. We present here a microfluidic device to trap and properly pair thousands of cells. Using this device, we paired different cell types, including fibroblasts, mouse embryonic stem cells and myeloma cells, achieving pairing efficiencies up to 70%. The device is compatible with both chemical and electrical fusion protocols. We observed that electrical fusion was more efficient than chemical fusion, with membrane reorganization efficiencies of up to 89%. We achieved greater than 50% properly paired and fused cells over the entire device, fivefold greater than with a commercial electrofusion chamber and observed reprogramming in hybrids between mouse embryonic stem cells and mouse embryonic fibroblasts.
1 Research Laboratory of Electronics, 50 Vassar Street, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts 02139, USA.
2 Microsystems Technology Laboratory, 60 Vassar Street, MIT, Cambridge, Massachusetts 02139, USA.
3 Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.
4 Department of Biology, MIT, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
5 Electrical Engineering and Computer Science Department, 77 Massachusetts Avenue, MIT, Cambridge, Massachusetts 02139, USA.
6 These authors contributed equally to this work.