人類細(xì)胞的移動(dòng)和不恰當(dāng)?shù)脑鲋硶?huì)導(dǎo)致癌癥發(fā)生。在細(xì)胞內(nèi)部,,磷酸化(phosphorylation)過(guò)程是一些參與癌癥發(fā)生的細(xì)胞過(guò)程的"開(kāi)關(guān)",,這些過(guò)程包括代謝,轉(zhuǎn)錄,,轉(zhuǎn)移,,細(xì)胞死亡和分化等。磷酸化過(guò)程由一些蛋白激酶所調(diào)控,,蛋白激酶能夠共同或單獨(dú)修飾蛋白質(zhì)的結(jié)構(gòu),從而改變蛋白,使得激酶可以控制細(xì)胞過(guò)程。
對(duì)于科學(xué)家來(lái)說(shuō),理解細(xì)胞中激酶的互作和活性的一個(gè)挑戰(zhàn),因?yàn)榭茖W(xué)家用來(lái)控制酶的機(jī)制不具特殊性,,這就經(jīng)常會(huì)影響細(xì)胞中的多條通路,。
在6月27日的Nature Biotechnology雜志上,藥理學(xué)教授Klaus Hahn在其最新研究論文中描述了一種叫構(gòu)象改造調(diào)節(jié)(engineered allosteric regulation)的新技術(shù),為科學(xué)家提供了一種研究活細(xì)胞內(nèi)蛋白互作的新工具,。
"該方法能夠?qū)罴?xì)胞中的激酶進(jìn)行精確的控制,,"Hahn介紹說(shuō),"我們可以選擇激酶并精確控制"打開(kāi)/關(guān)閉"的開(kāi)關(guān),,因此可以看到它們的運(yùn)作方式以及控制細(xì)胞功能的機(jī)制,。這項(xiàng)技術(shù)可以用于基礎(chǔ)研究,因?yàn)榧っ甘谴蟛糠旨?xì)胞過(guò)程的重要調(diào)控子,。精確調(diào)控細(xì)胞中激酶狀態(tài)的特性為獲得新的科學(xué)認(rèn)識(shí)開(kāi)辟了一條新道路,。"
該方法為分析活細(xì)胞中各種激酶的功能提供了有效的策略,有助于我們理解在細(xì)胞生長(zhǎng)和發(fā)育這些常見(jiàn)過(guò)程中一些重要蛋白的作用,,同樣也可以用于研究它們?cè)?a href="http://hnhlg.com/news/list-47.html" target="_blank">疾病中的靶向作用,,比如癌癥。
研究人員解釋說(shuō),,構(gòu)像改造調(diào)節(jié)的機(jī)制可以比作是汽車的輪子,。每個(gè)激酶的一個(gè)小部件就是其細(xì)胞內(nèi)活性的重要組成部分,。如果激酶的這個(gè)部分吸附上一個(gè)設(shè)計(jì)的蛋白,會(huì)導(dǎo)致分子不穩(wěn)定,使其不能有效控制細(xì)胞,這就像汽車輪子失去了螺栓一樣將不能使汽車有效的前行。
科學(xué)家隨后將一種藥物綁定到設(shè)計(jì)的蛋白上,,并使其緊緊附著在分子上,這就使得激酶能夠正常地運(yùn)作,這個(gè)過(guò)程就像是擰緊了汽車輪子上的螺栓一樣 .
這種新技術(shù)非常精確,,能夠控制特定的蛋白,允許科學(xué)家精確追蹤細(xì)胞內(nèi)激酶的活性。Hahn表示,,該方法或能幫助科學(xué)家更快更經(jīng)濟(jì)地研究與癌癥有關(guān)的細(xì)胞信號(hào)通路,,當(dāng)然也可以是其它一系列的人類疾病。(生物谷www.bioon.net)
生物谷推薦原文出處:
Nature Biotechnology doi:10.1038/nbt.1639
Engineered allosteric activation of kinases in living cells
Andrei V Karginov,Feng Ding,Pradeep Kota,Nikolay V Dokholyan& Klaus M Hahn
Studies of cellular and tissue dynamics benefit greatly from tools that can control protein activity with specificity and precise timing in living systems. Here we describe an approach to confer allosteric regulation specifically on the catalytic activity of protein kinases. A highly conserved portion of the kinase catalytic domain is modified with a small protein insert that inactivates catalytic activity but does not affect other protein functions (Fig. 1a). Catalytic activity is restored by addition of rapamycin or non-immunosuppresive rapamycin analogs. Molecular modeling and mutagenesis indicate that the protein insert reduces activity by increasing the flexibility of the catalytic domain. Drug binding restores activity by increasing rigidity. We demonstrate the approach by specifically activating focal adhesion kinase (FAK) within minutes in living cells and show that FAK is involved in the regulation of membrane dynamics. Successful regulation of Src and p38 by insertion of the rapamycin-responsive element at the same conserved site used in FAK suggests that our strategy will be applicable to other kinases.