生物谷Bioon.com 訊 8月6日,重慶大學(xué)生物工程學(xué)院鄧林紅教授實(shí)驗(yàn)室與美國哈佛大學(xué)合作實(shí)驗(yàn)室在PLoS ONE上發(fā)表論文,,揭示機(jī)械拉伸引發(fā)細(xì)胞流態(tài)化響應(yīng)的內(nèi)在機(jī)制,。
該合作研究是鄧林紅教授與哈佛大學(xué)合作者繼2007年在Nature上發(fā)表有關(guān)機(jī)械拉伸引起細(xì)胞流態(tài)化響應(yīng)論文后的進(jìn)一步深化。(Xavier Trepat,Linhong Deng et al.Universal physical responses to stretch in the living cell.Nature. doi:10.1038/nature05824),。2007年發(fā)表在Nature上的論文首次提出了活細(xì)胞在收到短暫機(jī)械牽張之后會(huì)迅速軟化并向流體狀態(tài)轉(zhuǎn)化,,隨后又逐漸恢復(fù)到拉伸前的狀態(tài)。這一現(xiàn)象在各種細(xì)胞和生化環(huán)境下具有普遍性,,因此對(duì)于理解細(xì)胞的物理行為和相關(guān)生理病理現(xiàn)象具有十分重要的意義,。但該現(xiàn)象的內(nèi)在機(jī)制仍然沒有得到完全的揭示。
該文章第一作者陳誠等利用細(xì)胞牽張力顯微測量技術(shù),,磁微粒扭轉(zhuǎn)細(xì)胞流變測量技術(shù)等細(xì)胞力學(xué)領(lǐng)域先進(jìn)技術(shù)動(dòng)態(tài)觀測了人體膀胱平滑肌細(xì)胞在受到短暫的機(jī)械牽張后,,其細(xì)胞硬度,、細(xì)胞牽張力、以及細(xì)胞骨架形態(tài)的變化,。實(shí)驗(yàn)結(jié)果表明,,膀胱平滑肌細(xì)胞在受到短暫牽張之后迅速"液化",然后緩慢的"再固化",,逐漸恢復(fù)到拉伸前的狀態(tài),。更為重要的是,由于短暫拉伸持續(xù)的時(shí)間非常短,,細(xì)胞發(fā)生的所有物理相應(yīng)過程并不是通過細(xì)胞內(nèi)部的生物化學(xué)信號(hào)通路調(diào)控的,,而是通過細(xì)胞骨架的纖維型肌動(dòng)蛋白(F-actin)的迅速分解和緩慢再重組來實(shí)現(xiàn)和調(diào)控的。
論文不僅采用人體內(nèi)另一種同樣收到機(jī)械牽張力的影響的膀胱平滑肌細(xì)胞進(jìn)一步證實(shí)了細(xì)胞在受到短暫拉伸后迅速發(fā)生流態(tài)化與緩慢恢復(fù)的普遍性,,并且找出首次觀測到了F-actin在其中扮演的關(guān)鍵作用,,部分揭示了此現(xiàn)象的內(nèi)在物理調(diào)控機(jī)制。
隨著現(xiàn)代細(xì)胞生物學(xué)和細(xì)胞動(dòng)力學(xué)的共同發(fā)展,,機(jī)械力和物理環(huán)境如何對(duì)細(xì)胞結(jié)構(gòu)和功能發(fā)生影響并決定許多重大生命活動(dòng)過程的謎團(tuán)正在被逐步打開,。因此,在對(duì)細(xì)胞進(jìn)行傳統(tǒng)的生物分析和化學(xué)分析的同時(shí),,系統(tǒng)地研究細(xì)胞的物理環(huán)境和受力情況以及相應(yīng)的細(xì)胞行為規(guī)律,,將對(duì)更準(zhǔn)確、更深入地理解細(xì)胞的運(yùn)作機(jī)制,、為細(xì)胞生理學(xué)和病理學(xué)的研究提供新的啟發(fā)和思路,。(生物谷Bioon.com)
生物谷推薦英文摘要:
PLoS ONE doi:10.1371/journal.pone.0012035
Fluidization and Resolidification of the Human Bladder Smooth Muscle Cell in Response to Transient Stretch
Cheng Chen1,2#, Ramaswamy Krishnan2#, Enhua Zhou2, Aruna Ramachandran3, Dhananjay Tambe2, Kavitha Rajendran2, Rosalyn M. Adam3, Linhong Deng1,2*, Jeffrey J. Fredberg2
1 Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China, 2 Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America, 3 Urological Diseases Research Center, Department of Urology, Children's Hospital Boston and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
Abstract
Background:Cells resident in certain hollow organs are subjected routinely to large transient stretches, including every adherent cell resident in lungs, heart, great vessels, gut, and bladder. We have shown recently that in response to a transient stretch the adherent eukaryotic cell promptly fluidizes and then gradually resolidifies, but mechanism is not yet understood.
Principal Findings:In the isolated human bladder smooth muscle cell, here we applied a 10% transient stretch while measuring cell traction forces, elastic modulus, F-actin imaging and the F-actin/G-actin ratio. Immediately after a transient stretch, F-actin levels and cell stiffness were lower by about 50%, and traction forces were lower by about 70%, both indicative of prompt fluidization. Within 5min, F-actin levels recovered completely, cell stiffness recovered by about 90%, and traction forces recovered by about 60%, all indicative of resolidification. The extent of the fluidization response was uninfluenced by a variety of signaling inhibitors, and, surprisingly, was localized to the unstretch phase of the stretch-unstretch maneuver in a manner suggestive of cytoskeletal catch bonds. When we applied an "unstretch-restretch" (transient compression), rather than a "stretch-unstretch" (transient stretch), the cell did not fluidize and the actin network did not depolymerize.
Conclusions:Taken together, these results implicate extremely rapid actin disassembly in the fluidization response, and slow actin reassembly in the resolidification response. In the bladder smooth muscle cell, the fluidization response to transient stretch occurs not through signaling pathways, but rather through release of increased tensile forces that drive acute disassociation of actin.