由復(fù)旦大學(xué)長江學(xué)者、著名干細(xì)胞專家張素春教授領(lǐng)導(dǎo)的研究團(tuán)隊(來自美國威斯康星大學(xué)麥迪遜分校和復(fù)旦大學(xué)上海醫(yī)學(xué)院解剖與組織胚胎學(xué)系),,近期在干細(xì)胞研究中再次取得突破性成果,他們首次成功地利用人類多能干細(xì)胞(hPSCs)分化生成了星形膠質(zhì)細(xì)胞,。這一研究成果近期發(fā)布在國際著名學(xué)術(shù)期刊《Nature Biotechnology》(影響因子= 22.29)雜志上,。
由于人類多能干細(xì)胞可以分化成體內(nèi)任意細(xì)胞,進(jìn)而形成身體的各種組織和器官,,是當(dāng)前干細(xì)胞研究的熱點和焦點,。深入開展多能干細(xì)胞的研究不僅具有重要的理論意義,而且在組織,、器官的再生,、修復(fù)和疾病治療方面都極具應(yīng)用價值。盡管近年來科學(xué)家們利用多能干細(xì)胞已經(jīng)成功培養(yǎng)和分化出心肌,、神經(jīng),、胰腺、骨等多種體細(xì)胞和不同組織,。然而直接將人胚多能干細(xì)胞分化為星形膠質(zhì)細(xì)胞對于研究人員仍是一個巨大的挑戰(zhàn),。
在張教授課題組的這一研究中,他們將人類多能干細(xì)胞分化為近似均一的不成熟星形膠質(zhì)細(xì)胞群,,并證實這些細(xì)胞具有與原代膠質(zhì)細(xì)胞相似的基因表達(dá),、谷氨酸攝取與促進(jìn)突觸生成等功能特性。當(dāng)將這些細(xì)胞移植到小鼠大腦中,,發(fā)現(xiàn)這些細(xì)胞連接到腦毛細(xì)血管,,并轉(zhuǎn)化為成熟星形膠質(zhì)細(xì)胞。這一重大突破將為研究大腦發(fā)育和功能,,了解膠質(zhì)細(xì)胞在疾病進(jìn)程中的作用提供新的細(xì)胞模型,,并將推動神經(jīng)疾病新治療策略的開發(fā)。
張素春教授于1989年在原上海醫(yī)科大學(xué)獲得碩士學(xué)位,,并留校工作,,1992年赴美國留學(xué),1996年獲得加拿大薩斯卡其溫大學(xué)生物學(xué)博士學(xué)位,。后受聘于美國威斯康星大學(xué),,主要從事神經(jīng)干細(xì)胞生物學(xué)和腦移植研究,在國際上首次利用人胚干細(xì)胞誘導(dǎo)出神經(jīng)干細(xì)胞與運動神經(jīng)元,。2002年獲美國麥迪遜市最佳科學(xué)家獎,,2005年成為美國國會關(guān)于干細(xì)胞研究聽證會證人。2006年受聘為復(fù)旦大學(xué)國家教育部第七批“長江學(xué)者獎勵計劃特聘教授”,。(生物谷 Bioon.com)
doi:10.1038/nbt.1877
PMC:
PMID:
Specification of transplantable astroglial subtypes from human pluripotent stem cells
Robert Krencik, Jason P Weick, Yan Liu, Zhi-Jian Zhang & Su-Chun Zhang
Human pluripotent stem cells (hPSCs) have been differentiated efficiently to neuronal cell types. However, directed differentiation of hPSCs to astrocytes and astroglial subtypes remains elusive. In this study, hPSCs were directed to nearly uniform populations of immature astrocytes (>90% S100β+ and GFAP+) in large quantities. The immature human astrocytes exhibit similar gene expression patterns as primary astrocytes, display functional properties such as glutamate uptake and promotion of synaptogenesis, and become mature astrocytes by forming connections with blood vessels after transplantation into the mouse brain. Furthermore, hPSC-derived neuroepithelia, patterned to rostral-caudal and dorsal-ventral identities with the same morphogens used for neuronal subtype specification, generate immature astrocytes that express distinct homeodomain transcription factors and display phenotypic differences of different astroglial subtypes. These human astroglial progenitors and immature astrocytes will be useful for studying astrocytes in brain development and function, understanding the roles of astrocytes in disease processes and developing novel treatments for neurological disorders.