紅細(xì)胞中的血紅蛋白攜帶維持生命的氧氣到全身。人體內(nèi)的血紅蛋白由四個(gè)亞基構(gòu)成,,分別為兩個(gè)α亞基和兩個(gè)β亞基,,而且每個(gè)亞基由一條肽鏈和一個(gè)血紅素分子構(gòu)成,肽鏈在生理?xiàng)l件下會盤繞折疊成球形,,把血紅素分子抱在里面,,這條肽鏈盤繞成的球形結(jié)構(gòu)又被稱為珠蛋白。
β-地中海貧血癥(beta-thalassemia)是一種遺傳性疾病,,是由于編碼β珠蛋白(beta-globin)的基因存在缺陷造成的,。所以血紅蛋白中的關(guān)鍵性組分珠蛋白便是由這個(gè)基因產(chǎn)生的。迄今為止,,在法國,,僅有一名病人接受基因療法來治療β-地中海貧血,不過還未聽說過有病人接受基因療法來治療鐮狀細(xì)胞性貧血癥(sickle cell anemia),。
美國威爾康奈爾醫(yī)學(xué)院(Weill Cornell Medical College)遺傳醫(yī)學(xué)副教授Stefano Rivella博士和他的同事們開發(fā)出的一種新的基因轉(zhuǎn)移技術(shù)確保編碼β珠蛋白的基因?qū)爰?xì)胞后仍然保持活性并且能夠表達(dá)β珠蛋白,。
研究人員將一種“錨蛋白絕緣物(ankyrin insulator)”掛載到慢病毒載體攜帶的β珠蛋白基因上。在基因轉(zhuǎn)移期間,,慢病毒載體被導(dǎo)入到從病人身上提取的骨髓干細(xì)胞內(nèi),,然后通過骨髓移植將這些干細(xì)胞移植回到病人體內(nèi),這樣它們就可以制造正常的β珠蛋白和血紅蛋白,。
這種錨蛋白絕緣物實(shí)現(xiàn)兩種目標(biāo),。首先,它在將正常的β珠蛋白基因?qū)爰?xì)胞時(shí)保護(hù)這種基因,。在以前的很多基因治療應(yīng)用中,,一個(gè)治療性基因被導(dǎo)入細(xì)胞后,這個(gè)基因隨機(jī)性地整合到病人基因組中,,然而整合位點(diǎn)非常重要,,如果它整合到基因組中的沉默區(qū)域,那么這個(gè)區(qū)域中的基因就不會表達(dá),。因此錨蛋白絕緣物所起的作用就是在基因組中創(chuàng)造一個(gè)活性區(qū)域,,在這個(gè)區(qū)域中無論新的基因插入到哪個(gè)位點(diǎn),它都會有效地發(fā)揮作用,。此外,,在慢病毒載體中掛載的錨蛋白絕緣物較小,,因此它應(yīng)當(dāng)能夠消除在接受基因療法來治療那名患有β-地中海貧血癥的法國病人身上觀察到的副作用。
研究小組還發(fā)現(xiàn)在產(chǎn)生紅細(xì)胞過程中,,這種錨蛋白絕緣物增加β珠蛋白基因轉(zhuǎn)錄的效率,。他們將這個(gè)基因整入到還未開始分化產(chǎn)生紅細(xì)胞的細(xì)胞中,當(dāng)這些細(xì)胞開始分化時(shí),,β珠蛋白基因被激活。錨蛋白絕緣物的存在能夠更加有效地激活這個(gè)基因,,這樣就能夠給紅細(xì)胞制造更多的治療性蛋白,。
這項(xiàng)研究進(jìn)一步證實(shí)根據(jù)患有β-地中海貧血癥的病人β珠蛋白基因的突變情況,通過慢病毒載體導(dǎo)入治療性基因的效率會發(fā)生變化,,因此可以基于此來對病人的治療效果進(jìn)行預(yù)測,。研究人員測試了19名β-地中海貧血病癥患者的樣品,其中這些樣品可分為兩組:“β-0(beta-zero)”細(xì)胞,,它不能制造任何β珠蛋白,,這就強(qiáng)迫病人在一生當(dāng)中必須接受輸血;“β+(beta-plus)”細(xì)胞,,它制造功能不能達(dá)到最佳水平的血紅蛋白,。通常而言,他們發(fā)現(xiàn)在β-0細(xì)胞接受基因治療后,,單拷貝慢病毒載體產(chǎn)生的血紅蛋白水平是在正常個(gè)人中觀察到的55%,。β+細(xì)胞在接受基因治療后,產(chǎn)生的血紅蛋白水平與正常個(gè)人中的旗鼓相當(dāng),,因此它們就被治愈,。
在鐮狀細(xì)胞性貧血癥中,問題又有著極大的不同,。在這種疾病中,,血紅蛋白產(chǎn)生的數(shù)量適中,但是不能發(fā)揮正常功能,,結(jié)果是紅細(xì)胞形狀類似鐮刀,,而且功能異常。因此利用基因療法治療鐮狀細(xì)胞性貧血癥的一個(gè)問題就是導(dǎo)入一個(gè)新的基因后還要確保血紅蛋白(不論是正常的,,還是形似鐮刀)的總量不應(yīng)增加太多,,不然就會產(chǎn)生其他問題。
通過這種新基因治療方法來處理從鐮狀細(xì)胞性貧血癥病人中提取的8個(gè)細(xì)胞樣品,,研究人員發(fā)現(xiàn)附著錨蛋白絕緣物到一個(gè)正常的β珠蛋白基因上會增加正常的β珠蛋白的數(shù)量,,同時(shí)減少鐮刀狀蛋白的數(shù)量。這樣β珠蛋白的總量保持不變,,這點(diǎn)非常重要,。
研究人員說,,他們開發(fā)出的這種新的基因治療技術(shù)有潛力治療很多紅細(xì)胞疾病,而且也是第一次將正常的β珠蛋白基因?qū)牖疾〉募?xì)胞中的成功效率跟正常的血紅蛋白表達(dá)水平提高相關(guān)聯(lián),,而這長期以來是有效治療這些疾病的一個(gè)障礙,。(生物谷:towersimper編譯)
doi:10.1371/journal.pone.0032345
PMC:
PMID:
Therapeutic Hemoglobin Levels after Gene Transfer in β-Thalassemia Mice and in Hematopoietic Cells of β-Thalassemia and Sickle Cells Disease Patients
Laura Breda, Carla Casu, Sara Gardenghi, Nicoletta Bianchi, Luca Cartegni, Mohandas Narla, Karina Yazdanbakhsh, Marco Musso, Deepa Manwani, Jane Little, Lawrence B. Gardner, Dorothy A. Kleinert, Eugenia Prus, Eitan Fibach, Robert W. Grady, Patricia J. Giardina, Roberto Gambari, Stefano Rivella
Preclinical and clinical studies demonstrate the feasibility of treating β-thalassemia and Sickle Cell Disease (SCD) by lentiviral-mediated transfer of the human β-globin gene. However, previous studies have not addressed whether the ability of lentiviral vectors to increase hemoglobin synthesis might vary in different patients.
We generated lentiviral vectors carrying the human β-globin gene with and without an ankyrin insulator and compared their ability to induce hemoglobin synthesis in vitro and in thalassemic mice. We found that insertion of an ankyrin insulator leads to higher, potentially therapeutic levels of human β-globin through a novel mechanism that links the rate of transcription of the transgenic β-globin mRNA during erythroid differentiation with polysomal binding and efficient translation, as reported here for the first time. We also established a preclinical assay to test the ability of this novel vector to synthesize adult hemoglobin in erythroid precursors and in CD34+ cells isolated from patients affected by β-thalassemia and SCD. Among the thalassemic patients, we identified a subset of specimens in which hemoglobin production can be achieved using fewer copies of the vector integrated than in others. In SCD specimens the treatment with AnkT9W ameliorates erythropoiesis by increasing adult hemoglobin (Hb A) and concurrently reducing the sickling tetramer (Hb S).
Our results suggest two major findings. First, we discovered that for the purpose of expressing the β-globin gene the ankyrin element is particularly suitable. Second, our analysis of a large group of specimens from β-thalassemic and SCD patients indicates that clinical trials could benefit from a simple test to predict the relationship between the number of vector copies integrated and the total amount of hemoglobin produced in the erythroid cells of prospective patients. This approach would provide vital information to select the best candidates for these clinical trials, before patients undergo myeloablation and bone marrow transplant.