來自美國格拉德斯通研究所的研究人員首次利用單個轉(zhuǎn)錄因子將皮膚細(xì)胞轉(zhuǎn)化為腦細(xì)胞,,并且它還能夠獨(dú)自發(fā)展為一個相互連接的功能性腦細(xì)胞網(wǎng)絡(luò)??茖W(xué)家們期待這樣的細(xì)胞轉(zhuǎn)化可能導(dǎo)致人們開發(fā)出更好的神經(jīng)退行性疾病模型來測試藥物。
在這項于6月7日在線發(fā)表在Cell Stem Cell期刊上的研究中,,來自格拉德斯通研究所研究員Yadong Huang博士實驗室的研究人員描述了他們?nèi)绾螌?dǎo)入單個基因Sox2到小鼠和人皮膚細(xì)胞中,。幾天之內(nèi),,這些皮膚細(xì)胞轉(zhuǎn)變?yōu)樵缙陔A段的腦干細(xì)胞(brain stem cell),也被稱作誘導(dǎo)性神經(jīng)干細(xì)胞(induced neural stem cells, iNSCs),。這種iNSCs開始自我更新,,很快就成熟為能夠傳遞電信號的神經(jīng)元。在一個月內(nèi),,這些神經(jīng)元就已形成神經(jīng)網(wǎng)絡(luò),。
Huang博士說,“許多候選藥物---特別是那些用來治療神經(jīng)退行性疾病的藥物---在臨床試驗中都失敗了,,這是因為當(dāng)前的疾病模型不能準(zhǔn)確地預(yù)測藥物對人大腦產(chǎn)生的影響,。將皮膚細(xì)胞進(jìn)行重編程而產(chǎn)生的人神經(jīng)元可能有助于評估這些藥物的療效和安全性,因而降低與人臨床試驗相關(guān)的風(fēng)險和資源消耗,。”
2007年,,山中伸彌博士利用4種轉(zhuǎn)錄因子將成體皮膚細(xì)胞轉(zhuǎn)變?yōu)轭愃婆咛ジ杉?xì)胞那樣發(fā)揮作用的細(xì)胞,即誘導(dǎo)性多能干細(xì)胞(iPSC),。這些iPSCs像胚胎干細(xì)胞那樣,,能夠產(chǎn)生體內(nèi)幾乎所有類型的細(xì)胞。2011年,,格拉德斯通研究所高級研究員Sheng Ding博士報道他利用小分子和轉(zhuǎn)錄因子的組合來將皮膚細(xì)胞直接轉(zhuǎn)變?yōu)樯窠?jīng)干細(xì)胞,。如今,Huang博士采取一種新的策略:利用一種轉(zhuǎn)錄因子Sox2直接將一種細(xì)胞類型轉(zhuǎn)變?yōu)榱硪环N細(xì)胞類型,,并且不用經(jīng)歷產(chǎn)生iPSC的階段,,從而能夠避免iPSCs在用于替換或修復(fù)受損器官或組織時可能產(chǎn)生腫瘤的潛在危險。
論文第一作者Karen Ring說,,“我們想觀察一下這些新產(chǎn)生的神經(jīng)元在移植到小鼠大腦后是否能夠觸發(fā)腫瘤生長,。結(jié)果,我們觀察到這些經(jīng)過重編程而產(chǎn)生的細(xì)胞整合到小鼠的大腦中,,并且并沒有產(chǎn)生任何腫瘤,。”
這項研究還揭示出Sox2的精確作用:作為一種主要調(diào)節(jié)物控制神經(jīng)干細(xì)胞的干性。在未來,,Huang博士和他的研究小組希望鑒定出類似地指導(dǎo)大腦中特定神經(jīng)祖細(xì)胞和一小部分神經(jīng)元發(fā)育的調(diào)節(jié)物,。
Huang博士說,“如果我們能夠精確找出哪些基因控制每種神經(jīng)元類型的發(fā)育,,那么我們就能夠利用人皮膚細(xì)胞樣品來在實驗室盤碟中制造它們,。我們?nèi)缓缶涂梢詼y試諸如治療帕金森疾病之類疾病的藥物對不同類型神經(jīng)元的影響,從而有助于我們加快步伐開發(fā)用于治療神經(jīng)退行性疾病的藥物,。”(生物谷:ZinFingerNase編譯)
doi: 10.1016/j.stem.2012.05.018
PMC:
PMID:
Direct Reprogramming of Mouse and Human Fibroblasts into Multipotent Neural Stem Cells with a Single Factor
Karen L. Ring, Leslie M. Tong, Maureen E. Balestra, Robyn Javier, Yaisa Andrews-Zwilling, Gang Li, David Walker, William R. Zhang, Anatol C. Kreitzer, Yadong Huang
The generation of induced pluripotent stem cells (iPSCs) and induced neuronal cells (iNCs) from somatic cells provides new avenues for basic research and potential transplantation therapies for neurological diseases. However, clinical applications must consider the risk of tumor formation by iPSCs and the inability of iNCs to self-renew in culture. Here we report the generation of induced neural stem cells (iNSCs) from mouse and human fibroblasts by direct reprogramming with a single factor, Sox2. iNSCs express NSC markers and resemble wild-type NSCs in their morphology, self-renewal, ability to form neurospheres, and gene expression profiles. Cloned iNSCs differentiate into several types of mature neurons, as well as astrocytes and oligodendrocytes, indicating multipotency. Implanted iNSCs can survive and integrate in mouse brains and, unlike iPSC-derived NSCs, do not generate tumors. Thus, self-renewable and multipotent iNSCs without tumorigenic potential can be generated directly from fibroblasts by reprogramming.