2012年9月3日 訊 /生物谷BIOON/ --干細胞在發(fā)育期間能夠產生大量不同類型的細胞,,并且在維持組織穩(wěn)態(tài)期間能夠替換受損或死亡的細胞。因此,,理解干細胞如何維持自我更新和分化之間的平衡是比較重要的,,特別是考慮到破壞這種平衡能夠導致組織退化或癌變。
果蠅幼蟲成神經細胞(neuroblast, NB)一直被廣泛地用作一種模式系統(tǒng)來研究干細胞特征,。這些神經干細胞經歷多輪重復的不對稱分裂,,并且基于它們的分裂方式,它們能夠被分成兩類NB。第一類NB表達轉錄因子Deadpan(Dpn)和Asense(Ase),,當進行分裂時,,產生一個較大的且能夠維持NB性質的子細胞,和一個較小的神經節(jié)母細胞(ganglion mother cell, GMC),,其中一個神經節(jié)母細胞能夠產生兩個有絲分裂后的神經元或神經膠質細胞,。第二類NB并不表達Ase,但是也進行不對稱分裂,,產生一個自我更新的NB和一個較小的中間神經祖細胞(intermediate neural progenitor cell, INP),。中間神經祖細胞經歷一個成熟階段后,先表達Ase,,然后表達Dpn,。
在這項新研究中,研究就人員利用熒光活化細胞分選法(fluorescence-activated cell sorting, FACS)來純化大量的來自果蠅幼蟲大腦中的NB和神經元,。他們發(fā)現(xiàn)利用FACS純化方法并不影響這些細胞的活性或獨特的特征,,接著對這些非常純的細胞群體進行mRNA測序來描述NB和神經元的轉錄組,結果鑒定出28個NB特異性的轉錄因子,。對這些轉錄因子進行過表達和RNA干擾實驗,,他們鑒定出Klumpfuss為NB自我更新的調節(jié)物。Klumpfuss功能缺失導致NB提前分化,,而它的過表達則導致可移植的腦瘤產生,。
這些研究為科學家們在未來進行功能性研究奠定基礎,也可能有助于揭示干細胞丟失它們的生長控制而產生腫瘤的機制,。(生物谷Bioon.com)
doi: 10.1016/j.celrep.2012.07.008
PMC:
PMID:
FACS Purification and Transcriptome Analysis of Drosophila Neural Stem Cells Reveals a Role for Klumpfuss in Self-Renewal
Christian Berger, Heike Harzer, Thomas R. Burkard, Jonas Steinmann, Suzanne van der Horst, Anne-Sophie Laurenson, Maria Novatchkova, Heinrich Reichert, Juergen A. Knoblich
Drosophila neuroblasts (NBs) have emerged as a model for stem cell biology that is ideal for genetic analysis but is limited by the lack of cell-type-specific gene expression data. Here, we describe a method for isolating large numbers of pure NBs and differentiating neurons that retain both cell-cycle and lineage characteristics. We determine transcriptional profiles by mRNA sequencing and identify 28 predicted NB-specific transcription factors that can be arranged in a network containing hubs for Notch signaling, growth control, and chromatin regulation. Overexpression and RNA interference for these factors identify Klumpfuss as a regulator of self-renewal. We show that loss of Klumpfuss function causes premature differentiation and that overexpression results in the formation of transplantable brain tumors. Our data represent a valuable resource for investigating Drosophila developmental neurobiology, and the described method can be applied to other invertebrate stem cell lineages as well.