2012年10月11日 電 /生物谷BIOON/ --近日,,俄勒岡健康科學(xué)大學(xué)以及Doernbecher兒童醫(yī)院的醫(yī)生證明,,人神經(jīng)干細(xì)胞HuCNS-SCs(StemCells公司的專利產(chǎn)品)能在患有嚴(yán)重髓鞘缺失癥狀的小鼠中生存并產(chǎn)生功能性髓鞘,。髓鞘是神經(jīng)膜細(xì)胞的質(zhì)膜沿著軸索的軸心螺旋纏繞形成的多層脂雙層結(jié)構(gòu),。主要成分為髓磷脂,具有高度絕緣性,。
在推進(jìn)干細(xì)胞治療患者的研究過程中,研究者報(bào)告指出,,這項(xiàng)最新研究是一個(gè)非常重要的發(fā)現(xiàn),因?yàn)樵诖蠖鄶?shù)情況下,,患者并沒有被及早診斷患髓鞘疾病,,直到他們開始表現(xiàn)出癥狀時(shí),。該研究成果發(fā)表在Science Translational Medicine雜志,。髓鞘疾病是一種常見的往往是致命的腦部疾病,包括腦性麻痹以及多發(fā)性硬化癥等,。
使用先進(jìn)的MRI技術(shù),OHSU Doernbecher兒童醫(yī)院最近發(fā)現(xiàn)健康大腦的白色物質(zhì)在記憶衰退以及大腦老化中發(fā)揮關(guān)鍵作用,,能導(dǎo)致髓鞘受損和衰老加速,。在這項(xiàng)突破性的研究中,,Doernbecher兒童醫(yī)院兒科研究所資深臨床醫(yī)生Stephen A. Back博士用轉(zhuǎn)基因小鼠模型(Shiverer免疫缺陷小鼠)開展研究,,這種小鼠會(huì)罹患進(jìn)行性神經(jīng)系統(tǒng)惡化疾病,,因?yàn)樾∈鬅o法正常生成髓鞘所需要的一種關(guān)鍵蛋白。雖然這種小鼠已經(jīng)得到了廣泛的研究調(diào)查,,但在此之前的研究中,真實(shí)的人腦源性干細(xì)胞生成新髓鞘的潛力并沒有被測(cè)試過,。
通常情況下,,科學(xué)家利用新生小鼠進(jìn)行研究,因?yàn)楦杉?xì)胞在新生小鼠大腦能生存得很好,。其實(shí)我們發(fā)現(xiàn),干細(xì)胞能優(yōu)先形成成熟的髓鞘細(xì)胞,,而不是其他類型的腦細(xì)胞,這在新生小鼠和老年小鼠腦源性干細(xì)胞的研究中得到了證實(shí),。
StemCells公司與科研人員合作已經(jīng)成功將干細(xì)胞在癥狀出現(xiàn)前就植入新出生的動(dòng)物中,但目前還不清楚細(xì)胞在移植到年老的動(dòng)物體內(nèi)后是否能生存,。在研究過程中,,Back和他的同事把這些細(xì)胞移植到神經(jīng)學(xué)功能下降的動(dòng)物中發(fā)現(xiàn)干細(xì)胞也能夠有效地生存和生成功能性髓鞘。Back解釋說這些研究是特別具有挑戰(zhàn)性,,因?yàn)槔鲜笤贛RI掃描過程中往往難以存活下來,。另外該研究一大重要進(jìn)步是提供了MRI可用于跟蹤移植髓鞘以及MRI信號(hào)中的白質(zhì)是來自人類髓鞘干細(xì)胞的證據(jù),。(生物谷:Bioon.com)
doi:10.1126/scitranslmed.3004371
PMC:
PMID:
Human Neural Stem Cells Induce Functional Myelination in Mice with Severe Dysmyelination
Nobuko Uchida, Kevin Chen, Monika Dohse, Kelly D. Hansen, Justin Dean, Joshua R. Buser,et al.
Shiverer-immunodeficient (Shi-id) mice demonstrate defective myelination in the central nervous system (CNS) and significant ataxia by 2 to 3 weeks of life. Expanded, banked human neural stem cells (HuCNS-SCs) were transplanted into three sites in the brains of neonatal or juvenile Shi-id mice, which were asymptomatic or showed advanced hypomyelination, respectively. In both groups of mice, HuCNS-SCs engrafted and underwent preferential differentiation into oligodendrocytes. These oligodendrocytes generated compact myelin with normalized nodal organization, ultrastructure, and axon conduction velocities. Myelination was equivalent in neonatal and juvenile mice by quantitative histopathology and high-field ex vivo magnetic resonance imaging, which, through fractional anisotropy, revealed CNS myelination 5 to 7 weeks after HuCNS-SC transplantation. Transplanted HuCNS-SCs generated functional myelin in the CNS, even in animals with severe symptomatic hypomyelination, suggesting that this strategy may be useful for treating dysmyelinating diseases.