2012年11月29日訊 /生物谷BIOON/ -- 草藥在亞洲整個歷史及早期歐洲文化中被廣泛使用。最近幾年,,草藥受到了西方醫(yī)學(xué)的重新關(guān)注。目前,,科學(xué)家們正從許多藥材中分離提取活性化合物,,并記錄它們的抗氧化及抗炎癥作用。在最近發(fā)表于Investigative Ophthalmology & Visual Science(IOVS)雜志上的一項研究中,,美國桑福德-伯納姆醫(yī)學(xué)研究所(Sanford-Burnham Medical Research Institute)的Stuart A.Lipton博士及其同事們報告稱,,草藥迷迭香中的一種組分——鼠尾草酸(carnosic acid)能夠促進眼睛的健康。
Lipton的團隊發(fā)現(xiàn),,在培養(yǎng)的細胞中,,鼠尾草酸能保護視網(wǎng)膜細胞免于變性及毒性,而在嚙齒動物模型中也能夠保護視網(wǎng)膜免于光誘導(dǎo)的損傷,。他們的發(fā)現(xiàn)表明,,鼠尾草酸可能對影響外層視網(wǎng)膜的疾病具有臨床應(yīng)用價值,包括年齡相關(guān)性黃斑變性,,在美國該病是最常見的眼科疾病,。
年齡相關(guān)性黃斑變性(AMD)
AMD可能有很多的根本性原因。然而,,以往的研究表明,,抗自由基的化學(xué)物質(zhì)可能會延緩或改善這種疾病。自由基是與氧和氮有關(guān)的活性化合物,,能夠損傷細胞膜及其他細胞過程,。
幾年前,Lipton的團隊發(fā)現(xiàn),,鼠尾草酸能夠擊退大腦中的自由基損害,。在最新的研究中,Lipton和他的同事們初步調(diào)查了鼠尾草酸在實驗室培養(yǎng)的視網(wǎng)膜細胞中的保護機制,。
研究人員將培養(yǎng)皿中的細胞暴露于 過氧化氫誘導(dǎo)的氧化應(yīng)激,,這一過程被認為會加速諸如黃斑變性及色素性視網(wǎng)膜炎等眼部疾病進展,。他們發(fā)現(xiàn),用鼠尾草酸處理過的細胞,,觸發(fā)了細胞中抗氧化酶的產(chǎn)生,,這反過來降低了活性氧和活性氮類自由基及過氧化物的水平。
迷迭香的治療潛力
Lipton及其同事們進一步在感光細胞光誘導(dǎo)損傷嚙齒動物模型中對鼠尾草酸進行了測試,。感光細胞是視網(wǎng)膜的一部分,,能夠?qū)⒐廪D(zhuǎn)換為電信號,產(chǎn)生視覺感知,。與未處理組相比,,用鼠尾草酸預(yù)先處理的嚙齒動物,保留了更厚的外層核層,,這預(yù)示著視網(wǎng)膜的感光細胞得到了保護,。鼠尾草酸處理過的嚙齒動物,其視網(wǎng)膜電活動也表現(xiàn)的更好,。視網(wǎng)膜電活動是健康感光細胞功能的一種測量方法,。
有關(guān)下一步的計劃,Lipton稱,,正在開發(fā)改進的鼠尾草酸衍生物及相關(guān)化合物,,用于保護視網(wǎng)膜及其他大腦區(qū)域免受數(shù)種退行性疾病,包括年齡相關(guān)性黃斑變性及各種形式的老年癡呆癥,。
該團隊的成員來自于Nagase & Co公司,、艾爾建(Allergan)公司、巖手大學(xué)(Iwate University),,將繼續(xù)致力于鼠尾草酸的研究,。
Sanford-Burnham研究所是一個合作研究機構(gòu),致力于發(fā)現(xiàn)疾病的根本性分子病因,,以及開展在癌癥、神經(jīng)退行性疾病,、糖尿病,、感染、炎癥,、兒科疾病等方面重大研究項目,,開發(fā)創(chuàng)新性療法。(生物谷bioon.com)
編譯自:Compound Found in Rosemary Protects Against Macular Degeneration in Laboratory Model
doi:10.1167/iovs.12-10793
PMC:
PMID:
Protective effect of carnosic acid, a pro-electrophilic compound, in models of oxidative stress and light-induced retinal degeneration.
T. Rezaie, S. R. McKercher, K. Kosaka, et al
Abstract:Purpose:The herb rosemary has been reported to have antioxidant and anti-inflammatory activity. We have previously shown that carnosic acid (CA), present in rosemary extract, crosses the blood–brain barrier to exert neuroprotective effects by upregulating endogenous antioxidant enzymes via the Nrf2 transcriptional pathway. Here we investigated the antioxidant and neuroprotective activity of CA in retinal cell lines exposed to oxidative stress and in a rat model of light-induced retinal degeneration (LIRD). Methods:Retina-derived cell lines ARPE-19 and 661W treated with hydrogen peroxide were used as in vitro models for testing the protective activity of CA. For in vivo testing, dark-adapted rats were given intraperitoneal injections of CA prior to exposure to white light to assess protection of the photoreceptor cells. Retinal damage was assessed by measuring outer nuclear layer thickness and by electroretinogram (ERG). Results:In vitro, CA significantly protected retina-derived cell lines (ARPE-19 and 661W) against H2O2-induced toxicity. CA induced antioxidant phase 2 enzymes and reduced formation of hyperoxidized peroxiredoxin (Prx)2. Similarly, we found that CA protected retinas in vivo from LIRD, producing significant improvement in outer nuclear layer thickness and ERG activity. Conclusions:These findings suggest that CA may potentially have clinical application to diseases affecting the outer retina, including age-related macular degeneration and retinitis pigmentosa, in which oxidative stress is thought to contribute to disease progression.