2012年12月4日訊 /生物谷BIOON/ --從成熟細(xì)胞生成干細(xì)胞的一種新方法,,有望提高實(shí)驗(yàn)室中干細(xì)胞的生產(chǎn),幫助消除再生醫(yī)學(xué)療法的障礙。
索爾克生物研究所(Salk Institute for Biological Studies)研究人員開發(fā)的一種新技術(shù),可以獲得無(wú)限量的干細(xì)胞及其衍生物,,同時(shí)將生產(chǎn)的時(shí)間縮短一半還多,,從近2個(gè)月減少至2周。研究結(jié)果已發(fā)表于本周的Nature Methods,。
在干細(xì)胞療法被廣泛應(yīng)用之前,,需要克服的一個(gè)障礙是如何以足夠快的速度生產(chǎn)足夠多的干細(xì)胞用于急性臨床應(yīng)用。干細(xì)胞由于其多能性(pluripotency)備受重視,,具有成為幾乎所有細(xì)胞的能力,。用于研究及臨床應(yīng)用的干細(xì)胞有2種來(lái)源:直接獲得多能干細(xì)胞,或?qū)⒊墒旒?xì)胞重新編程轉(zhuǎn)變?yōu)槎嗄芨杉?xì)胞,。
研究人員開發(fā)了一種重編程方法學(xué),,稱之為“間接譜系轉(zhuǎn)換(indirect lineage conversion,ILC)”:在短暫暴露于重編程因子后,,體細(xì)胞被推回至一種可塑性的中間狀態(tài),,隨后再進(jìn)行分化。
研究人員利用這種方法,,成功將人成纖維細(xì)胞轉(zhuǎn)變?yōu)橹信邔幼婕?xì)胞,,這些祖細(xì)胞具有雙向分化潛能,可分化生成內(nèi)皮細(xì)胞及平滑肌細(xì)胞,。具體來(lái)講,,研究人員將人成纖維細(xì)胞轉(zhuǎn)變成了具有雙向分化潛能的CD34+祖細(xì)胞。在體內(nèi),,這些分化的內(nèi)皮細(xì)胞,,表現(xiàn)出新生血管生成性(neo-angiogenesis)及吻合性(anastomosis )。
這種間接譜系轉(zhuǎn)換方法學(xué),,提供了一種簡(jiǎn)單高效的技術(shù),。在這種策略中,重編程至多能性的完整過(guò)程被縮短或繞過(guò),,體細(xì)胞的轉(zhuǎn)變經(jīng)歷了一種可塑性的中間狀態(tài),。
該項(xiàng)研究首次證明,這種涉及部分去分化(partial de-differentiation)的重編程策略,,在人類細(xì)胞中是可行的,,可用于多潛能祖細(xì)胞的生成。(生物谷bioon.com)
編譯自:Faster, safer method for producing stem cells
doi:10.1038/nmeth.2255
PMC:
PMID:
Conversion of human fibroblasts to angioblast-like progenitor cells
Leo Kurian, Ignacio Sancho-Martinez, Emmanuel Nivet, et al
Abstract:Lineage conversion of one somatic cell type to another is an attractive approach for generating specific human cell types. Lineage conversion can be direct, in the absence of proliferation and multipotent progenitor generation, or indirect, by the generation of expandable multipotent progenitor states. We report the development of a reprogramming methodology in which cells transition through a plastic intermediate state, induced by brief exposure to reprogramming factors, followed by differentiation. We use this approach to convert human fibroblasts to mesodermal progenitor cells, including by non-integrative approaches. These progenitor cells demonstrated bipotent differentiation potential and could generate endothelial and smooth muscle lineages. Differentiated endothelial cells exhibited neo-angiogenesis and anastomosis in vivo. This methodology for indirect lineage conversion to angioblast-like cells adds to the armamentarium of reprogramming approaches aimed at the study and treatment of ischemic pathologies.