來(lái)自賓夕法尼亞大學(xué)Perelman醫(yī)學(xué)院糖尿病、肥胖和代謝研究所的醫(yī)學(xué)教授Morris J. Birnbaum領(lǐng)導(dǎo)一個(gè)研究小組,,在新研究中發(fā)現(xiàn)糖尿病藥物二甲雙胍(metformin)是以一種不同于從前認(rèn)知的方式發(fā)揮藥物作用,。他們?cè)谛∈笱芯恐凶C實(shí)二甲雙胍抑制了肝臟激素——胰高血糖素生成某種重要信號(hào)分子的能力,從而為我們指出了新的藥物靶點(diǎn),。研究結(jié)果在線發(fā)表在本周的《自然》(Nature)雜志上,。
50年來(lái),雙胍類藥物是能夠有效治療糖尿病,、減低過(guò)度葡萄糖生成的少數(shù)幾種療法之一,,其中二甲雙胍是雙胍類藥物中最常用于治療2型糖尿病的處方藥。胰島素?zé)o法抑制肝葡萄糖排出,,是2型糖尿病和其他胰島素抵抗疾病高血糖的一個(gè)主要因素,。
Birnbaum說(shuō):“總的來(lái)說(shuō),二甲雙胍通過(guò)減少肝葡萄糖生成降低了血糖,。但我們卻并不真正了解它是如何達(dá)到這一效應(yīng)的。”
尚未完全了解
盡管二甲雙胍能有效治療糖尿病,,但它的作用機(jī)制至今卻仍不完全被人理解,。大約10年前,研究人員提出二甲雙胍是通過(guò)激活A(yù)MPK酶減少了葡萄糖合成,。然而在2010年時(shí),,當(dāng)前Nature研究的合作者們通過(guò)遺傳學(xué)實(shí)驗(yàn)向上述觀點(diǎn)提出了挑戰(zhàn)。文章的共同作者,、來(lái)自法國(guó)Inserm,,CNRS和巴黎第五大學(xué)的Marc Foretz和Benoit Viollet發(fā)現(xiàn),缺失AMPK的小鼠其肝臟仍然能夠?qū)Χ纂p胍做出反應(yīng),,表明血糖水平是在AMPK信號(hào)外受到控制,。
重新調(diào)查葡萄糖正常調(diào)控的機(jī)制,研究小組了解到,,當(dāng)沒(méi)有食物攝入且葡萄糖降低時(shí),,胰臟會(huì)分泌胰高血糖素向肝臟發(fā)送生成葡萄糖的信號(hào)。于是他們質(zhì)疑二甲雙胍是否是通過(guò)終止胰高血糖素級(jí)聯(lián)反應(yīng)來(lái)發(fā)揮作用的,。
Nature新研究描述了二甲雙胍拮抗胰高血糖素作用,,從而降低空腹血糖水平的一種新機(jī)制,。研究小組發(fā)現(xiàn)二甲雙胍導(dǎo)致了小鼠AMP聚集,AMP抑制了一種稱作腺苷酸環(huán)化酶的酶,,因此降低了環(huán)AMP水平和蛋白激酶活性,,最終阻止了肝細(xì)胞以胰高血糖素依賴性方式排出葡萄糖。
重新認(rèn)識(shí)metformin的作用,,Birnbaum和同事們推測(cè),,通過(guò)模擬二甲雙胍抑制腺苷酸環(huán)化酶的途徑,腺苷酸環(huán)化酶有可能成為一個(gè)新的藥物靶點(diǎn),。這一策略將繞過(guò)二甲雙胍對(duì)于細(xì)胞線粒體能量生成的影響,,并有可能避免許多服用二甲雙胍的患者的不良副作用,甚至可能對(duì)那些耐受二甲雙胍的患者起作用,。(生物谷Bioon.com)
doi:10.1038/nature11808
PMC:
PMID:
Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP
Russell A. Miller, Qingwei Chu, Jianxin Xie, Marc Foretz, Benoit Viollet & Morris J. Birnbaum
Glucose production by the liver is essential for providing a substrate for the brain during fasting. The inability of insulin to suppress hepatic glucose output is a major aetiological factor in the hyperglycaemia of type-2 diabetes mellitus and other diseases of insulin resistance1, 2. For fifty years, one of the few classes of therapeutics effective in reducing glucose production has been the biguanides, which include phenformin and metformin, the latter the most frequently prescribed drug for type-2 diabetes3. Nonetheless, the mechanism of action of biguanides remains imperfectly understood. The suggestion a decade ago that metformin reduces glucose synthesis through activation of the enzyme AMP-activated protein kinase (AMPK) has recently been challenged by genetic loss-of-function experiments4. Here we provide a novel mechanism by which metformin antagonizes the action of glucagon, thus reducing fasting glucose levels. In mouse hepatocytes, metformin leads to the accumulation of AMP and related nucleotides, which inhibit adenylate cyclase, reduce levels of cyclic AMP and protein kinase A (PKA) activity, abrogate phosphorylation of critical protein targets of PKA, and block glucagon-dependent glucose output from hepatocytes. These data support a mechanism of action for metformin involving antagonism of glucagon, and suggest an approach for the development of antidiabetic drugs.