健康的視桿和視錐細胞可以把光轉(zhuǎn)變?yōu)殡娦盘?,這種信號通過附近的細胞,,最終到達大腦。在大腦中,,這些信號再被翻譯成視覺影像,。如果視桿和視錐細胞缺失或壞死,動物就將喪失視力,。在世界范圍內(nèi),,大約有1/3000的失明是由視網(wǎng)膜色素變性等相關疾病所引發(fā)的,比如先天遺傳性眼底退化性疾病以及視網(wǎng)膜白斑等,,都可以引起視網(wǎng)膜的視覺敏感細胞壞死和缺失,,從而導致失明。
要恢復喪失視覺細胞的人和動物的視力,,科學家建議采用2種策略:一種是用干細胞培養(yǎng)視神經(jīng)細胞,,比如《美國科學院學報》4月初報道了中國科學家用植入的新型納米纖維支架,讓視神經(jīng)重新生長以恢復視神經(jīng)受損病人部分視力的研究,。還有一種辦法,,采用感光的合成芯片來替代視覺細胞。但到目前為止,,這些研究還面臨著無數(shù)挑戰(zhàn),。
在視桿和視錐細胞死亡后,視網(wǎng)膜上的其他細胞還有一定功能,。這些剩余的細胞包括內(nèi)部視網(wǎng)膜神經(jīng)元,,這些神經(jīng)細胞在處理了從視桿和視錐來的信息后,能將這些信息發(fā)入大腦,。
美國底特律州立大學醫(yī)學院的神經(jīng)學家潘卓華(Zhuo-Hua Pan)說:我們產(chǎn)生這個想法,是因為想到如果我們將這些神經(jīng)元變成光傳感器,,可能就是一種復明的方法,。
為了完成這項研究,潘和同事借用一個從綠藻而來基因,,這是一種為光敏蛋白編碼的基因,,叫做channelrhodopsin-2 (ChR2),它形成于海藻細胞的表面,海藻利用這種蛋白探測光,,這樣,,它們就可以游到光合作用最強的地方。
研究人員先將基因插入到無害的病毒中,,然后用病毒感染健康老鼠的眼睛,。結(jié)果,在研究人員再用光照射它們的時候,,個別攜帶著光敏藻基因的內(nèi)部視網(wǎng)膜神經(jīng)元就產(chǎn)生了電流,。
接著,研究人員采用一種遺傳上培育出來特殊小鼠,,它們是在幾月齡就喪失了視桿和視錐細胞的盲鼠,。用這種鼠作為研究對象,讓成年盲鼠的眼睛感染攜帶ChR2基因的病毒,。令人驚喜的是,,盲鼠的內(nèi)視網(wǎng)膜神經(jīng)元變?yōu)閷饷舾辛恕?/p>
為了觀察這些細胞產(chǎn)生的電信號是否可以最終抵達大腦,潘和同事將電極插到了盲鼠處理光的大腦區(qū)域,。當他們對著老鼠眼睛照射光亮時,,看到了電流的反應。這一研究結(jié)果發(fā)表在4月6日的《神經(jīng)元》雜志上,。
雖然由光發(fā)生的信號可抵達盲鼠大腦,,但潘指出,這還并不是說,,失明的動物就此可以看見東西了,。這些專門培育的盲鼠,在它們作為新生兒睜開眼睛前,,其絕大多數(shù)視桿和視錐細胞就被殺死了,。研究人員擔心,因為視覺是由經(jīng)驗限定的,,所以嚙齒動物的大腦可能不能翻譯這些視覺信號,。他的小組計劃在未來的實驗中用其他動物模型做視覺發(fā)育實驗。
這一發(fā)現(xiàn)提供了一個治療失明的新方法,。美國伯克萊加州大學的神經(jīng)學家約翰·G. 弗里納蘭(John G. Flannery)和肯尼思·P. 格林博格(Kenneth P. Greenberg)高度評價了這一工作,。他們指出:顯然,這是進入用基因工程重建視網(wǎng)膜神經(jīng)這一新領域意義重大的第一步,。
部分英文原文:
New Approach to Restoring Vision
Vision begins when rods and cones, the photoreceptor cells in our eyes, sense light. They then send signals through the retina and the optic nerve to the brain, where visual images are formed. Unfortunately, some genetic diseases such as retinitis pigmentosa (RP) can cause photoreceptors to degenerate and die, leading to blindness. A new study describes an inventive approach to try to restore vision to eyes that have lost their photoreceptors.
The research, funded by NIH's National Eye Institute (NEI) and published in the April 6, 2006 issue of Neuron, was done using mice that had been genetically bred to lose their rods and cones. Like humans with RP, these mice go progressively blind. Dr. Zhuo-Hua Pan of Wayne State University School of Medicine and his colleagues used gene-transfer to get the surviving cells in the retinas of blind mice to produce a light-absorbing protein called channelrhodopsin-2, originally from a type of green algae.
The surviving cells in the retina are normally not sensitive to light. In a majority of the treated mice, however, they became light sensitive and sent signals to the brain. The light sensitivity lasted for at least six months.
This study raises the intriguing possibility that some vision might be restored after rods and cones have died by making other cells in the retina sensitive to light. While these mice probably didn't regain usable vision, the investigators have a number of technical improvements to their experiments in mind that might make it possible in the future.