植物利用光進行生長被很多人視為理所當然的事,實際上我們對于其中的機制所知并不多,。美國科學家進行的一項最新研究,,揭示了參與植物光反應蛋白的特殊生成機制。這一發(fā)現(xiàn)大大提高了人們對于植物光反應調節(jié)機制的認識,。相關論文11月23日發(fā)表于《科學》(Science)雜志上,。
此次研究由美國國家科學基金會(NSF)資助,,領導者是美國鮑依斯·湯普森植物研究所(Boyce Thompson Institute for Plant Research)的Haiyang Wang。研究人員利用擬南芥(Arabidopsis)作為實驗對象,,發(fā)現(xiàn)擬南芥在未暴露于光之前,,就為光反應作了準備。這種準備包括產(chǎn)生一對緊密相關的蛋白——FHY3和FAR1,,這兩種蛋白的產(chǎn)生會提升另一對蛋白(FHY1和FHL)的含量,。之前的研究已經(jīng)確定,F(xiàn)HY1和FHL是植物光反應的關鍵參與蛋白,。
Wang說,,植物這種為光反應儲存蛋白的行為,就好比是旅行者在夜晚為汽車加滿油,,以方便在天一亮就踏上旅程,。
雖然之前的研究已大致確定了植物光反應的步驟,不過FHY3和FAR1調節(jié)光反應機制的發(fā)現(xiàn)為科學家理解這一過程提供了新的視角,。
此外,,研究人員還發(fā)現(xiàn)FHY3和FAR1蛋白與光敏色素A之間存在一個負反饋環(huán)(negative feedback loop),即細胞核中積聚的光敏色素A越多,,產(chǎn)生的FHY3 /和FAR1蛋白就越少,,這樣輸入細胞核的光敏色素A就越少。Wang說:“這一反饋環(huán)就像是一個內(nèi)置的剎車,,限制了光反應的流動,。”
研究人員還發(fā)現(xiàn),F(xiàn)HY3 和 FAR1蛋白與某些酶之間存在相似性,,這些酶是由跳躍基因(jumping genes)產(chǎn)生的,。研究人員認為,這表明,,F(xiàn)HY3和FAR1蛋白可能是由跳躍基因進化來的,。如果確實如此,那么可能正是這一重要的進化過程幫助開花植物在地球上生存下來,。(科學網(wǎng) 梅進/編譯)
原始出處:
Science 23 November 2007:
Vol. 318. no. 5854, pp. 1302 - 1305
DOI: 10.1126/science.1146281
Transposase-Derived Transcription Factors Regulate Light Signaling in Arabidopsis
Rongcheng Lin,1 Lei Ding,1 Claudio Casola,2 Daniel R. Ripoll,3 Cédric Feschotte,2 Haiyang Wang1*
Plants use light to optimize growth and development. The photoreceptor phytochrome A (phyA) mediates various far-red light–induced responses. We show that Arabidopsis FHY3 and FAR1, which encode two proteins related to Mutator-like transposases, act together to modulate phyA signaling by directly activating the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. FHY3 and FAR1 have separable DNA binding and transcriptional activation domains that are highly conserved in Mutator-like transposases. Further, expression of FHY3 and FAR1 is negatively regulated by phyA signaling. We propose that FHY3 and FAR1 represent transcription factors that have been co-opted from an ancient Mutator-like transposase(s) to modulate phyA-signaling homeostasis in higher plants.
1 Boyce Thompson Institute for Plant Research (BTI), Cornell University, Ithaca, NY 14853, USA.
2 Department of Biology, University of Texas, Arlington, TX 76019, USA.
3 Computational Biology Service Unit (CBSU), Cornell University, Ithaca, NY 14853, USA.
* To whom correspondence should be addressed. E-mail: [email protected]