美國科學家近日發(fā)現(xiàn),熱帶白蟻體內微生物分泌的酶可將植物纖維素轉化為糖類,而這些糖類在發(fā)酵后能夠成為生物燃料,。這意味著人們在清潔、可再生燃料的探所上再進一步。
據(jù)法新社報道,,美國一個研究小組日前在英國《自然》雜志上發(fā)表論文說,中非一種白蟻的后腸中“可能藏有微生物金礦”,,這些微生物能分泌出酶,,使白蟻順利分解食入的木材纖維,將木聚合物轉化為糖類,,從而獲得營養(yǎng),。
研究人員表示,這種藏身于白蟻下半身的酶十分寶貴,,可以用來制造新一代生物燃料,,替代有污染、價格昂貴并帶來地緣政治風險的化石燃料,。
目前,,研究小組正在將一部分微生物的遺傳密碼進行排序和分析,希望仿照白蟻的微型生物反應器進行工業(yè)生產(chǎn),。
據(jù)報道,,目前人們所使用的生物燃料主要來自玉米和蔗糖等作物,原理是利用酶,、發(fā)酵和蒸餾等方式使作物中的淀粉轉化為乙醇,。新一代生物燃料將使用糧食以外的植物纖維素材料,如木屑和稻草,;但是,,礙于成本和復雜性,這些新的加工方法很難實現(xiàn)大規(guī)模生產(chǎn),。(新華網(wǎng))
原始出處:
Nature 450, 560-565 (22 November 2007) | doi:10.1038/nature06269; Received 15 July 2007; Accepted 18 September 2007
Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite
Falk Warnecke1,8, Peter Luginbühl2,8, Natalia Ivanova1, Majid Ghassemian2, Toby H. Richardson2,9, Justin T. Stege2, Michelle Cayouette2, Alice C. McHardy3,9, Gordana Djordjevic2, Nahla Aboushadi2, Rotem Sorek1, Susannah G. Tringe1, Mircea Podar4, Hector Garcia Martin1, Victor Kunin1, Daniel Dalevi1, Julita Madejska1, Edward Kirton1, Darren Platt1, Ernest Szeto1, Asaf Salamov1, Kerrie Barry1, Natalia Mikhailova1, Nikos C. Kyrpides1, Eric G. Matson5, Elizabeth A. Ottesen6, Xinning Zhang5, Myriam Hernández7, Catalina Murillo7, Luis G. Acosta7, Isidore Rigoutsos3, Giselle Tamayo7, Brian D. Green2, Cathy Chang2, Edward M. Rubin1, Eric J. Mathur2,9, Dan E. Robertson2, Philip Hugenholtz1 & Jared R. Leadbetter5,8
DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
Verenium Corporation (formerly Diversa), 4955 Directors Place, San Diego, California 92121, USA
IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, New York 10598, USA
Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, Tennessee 37831-6026, USA
Department of Environmental Science and Engineering,
Division of Biology, Mailcode 138-78, California Institute of Technology, Pasadena, California 91125, USA
INBio, Instituto Nacional de Biodiversidad, Apdo. Postal 22-3100 Santo Domingo de Heredia, Costa Rica
These authors contributed equally to this work.
Present addresses: Synthetic Genomics, Inc., 11149 North Torrey Pines Road, Suite 100, La Jolla, California 92037, USA (T.H.R., E.J.M.); Max Planck Institute for Computer Science, Stuhlsatzenhausweg 85, 66123 Saarbrücken, Germany (A.C.M.).
Correspondence to: Jared R. Leadbetter5,8 Correspondence and requests for materials should be addressed to J.R.L. (Email: [email protected]).
From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms1 and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis2. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding 'higher' Nasutitermes species (which do not contain cellulose-fermenting protozoa) to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H2 metabolism, CO2-reductive acetogenesis and N2 fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-l environment can be.