生物谷報(bào)道:通常,,研究人員都是用藥物,、化學(xué)試劑來控制細(xì)胞信號(hào)途徑的,。但是現(xiàn)在,,研究人員能夠用磁場(chǎng)來控制細(xì)胞信號(hào)途徑,。
來自美國波士頓兒童醫(yī)院的研究人員開發(fā)出一種新的納米生物技術(shù),該技術(shù)能夠利用磁場(chǎng)在細(xì)胞水平上控制信號(hào)途徑,。這項(xiàng)研究的結(jié)果發(fā)表在1月的《自然·納米技術(shù)》雜志上,。
波士頓兒童醫(yī)院的Don Ingber博士和Robert Mannix博士與哈佛大學(xué)的Mara Prentiss博士合作設(shè)計(jì)出了一種能夠使直徑30納米的微珠與細(xì)胞表面的受體分子相結(jié)合。
Don Ingber博士
當(dāng)處于磁場(chǎng)中時(shí),,這些珠子就變成了磁鐵并通過磁力相互吸引,。這種吸引力拽著細(xì)胞的受體形成一大簇——這種情況就類似藥物或其他分子與之結(jié)合時(shí)的發(fā)生的情況一樣。進(jìn)而,,這種“簇化”活化了這種受體,,從而啟動(dòng)影響不同細(xì)胞功能的生物化學(xué)信號(hào)級(jí)聯(lián)。
(在左圖中,,細(xì)胞已用微磁珠進(jìn)行預(yù)包被,,每一個(gè)都結(jié)合到細(xì)胞受體上(見箭頭)。當(dāng)應(yīng)用磁場(chǎng)時(shí)(右圖),,磁珠變成磁體并聚攏在一起,,同時(shí)將受體拉近。這個(gè)聚攏的過程類似于藥物或其它結(jié)合到細(xì)胞的小分子所起的作用,,因此會(huì)在細(xì)胞中引發(fā)相同的生物化學(xué)反應(yīng),。圖片由Ingber博士提供。)
生物谷推薦原始出處:
Nature Nanotechnology 3, 36 - 40 (2008)
Published online: 23 December 2007 | doi:10.1038/nnano.2007.418
Subject Categories: Nanobiotechnology | Nanomagnetism and spintronics
Nanomagnetic actuation of receptor-mediated signal transduction
Robert J. Mannix1,4, Sanjay Kumar1,2,4, Flávia Cassiola1, Martín Montoya-Zavala1, Efraim Feinstein3, Mara Prentiss3 & Donald E. Ingber1
Abstract
Complex cell behaviours are triggered by chemical ligands that bind to membrane receptors and alter intracellular signal transduction. However, future biosensors, medical devices and other microtechnologies that incorporate living cells as system components will require actuation mechanisms that are much more rapid, robust, non-invasive and easily integrated with solid-state interfaces. Here we describe a magnetic nanotechnology that activates a biochemical signalling mechanism normally switched on by binding of multivalent chemical ligands. Superparamagnetic 30-nm beads, coated with monovalent ligands and bound to transmembrane receptors, magnetize when exposed to magnetic fields, and aggregate owing to bead–bead attraction in the plane of the membrane. Associated clustering of the bound receptors acts as a nanomagnetic cellular switch that directly transduces magnetic inputs into physiological cellular outputs, with rapid system responsiveness and non-invasive dynamic control. This technique may represent a new actuator mechanism for cell-based microtechnologies and man–machine interfaces.